Apple 6502
Assembler/Editor

TABLE OF CONTENTS
INTRODUCTION

1
1
2

System Description
Before You Start
Starting the System

THE EDITOR

—
QW O ooy DS W

[
—

ottt
v NN

-

fot bt
~N o o

17
18
18
19
2¢
29
21
21
21
21
22
22
23
23
23
23
24

25
25

26
26

Description of the Editor
Entering Commands
Command Mode Facilities

Multiple Command Entry
Command Delimiter Set
Repeat Last List Command
Direct DOS Commands

Command Syntax Help
Syntax of Parameter Lists

Editing Commands

Add
Copy
Change
Delete
Edit
Find
Insert
List
Print
Replace

Disk and Tape Commands

LOAD
SAVE
APPEND
TLOAD
TSAVE

Operating Commands

SLot
DRive
CATalog
FILE
HImem=
LOmem=
LENgth
MON
NEW

PR#

TRuncate
Tabs

Where
END

ASSEMBLER/EDITOR

THE ASSEMBLER

27

27
28
29
30
30
3¢
31
31
32
32
33
33
33
34
34
35
36
36
36
37
37
38
38
38
39
39
46
40
41
41
41
42
42
42
43
43
43
43
44
44
44
45
45
45
46
46
47
48
48
49
5¢

Description of the Assembler
Before You Start
The ASM Command
Assembly Mode Commands
Abort Assembly
Suspend or Single-Step Listing
List Part of Program
Source Program Format
The Label
The Operation Code
The Operand Field
The Comment Field
Forming the Operand Field
Labels
Constants
Reserved Words
Arithmetic Operators
Address Expressions
Assembler Directives
ORG
OBJ
EQU
MSB
DSECT
DEND
REL
EXTRN
ENTRY
CHN
Listing Directives
PAGE
LST ON/OFF
REP
CHR
SKP
SBTL
Data Definition Directives
ASC
DCI
DFB
DW
DDB
DS

Conditional Assembly Directives
DO

ELSE

FIN
Addressing Mode Summary
Assembler Directive Summary
Operation Code Summary
Symbol Table Listing

ASSEMBLER/EDITOR

APPENDICES 51

52
54
56
58
60
62
64

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

INDEX

A

O mEE U Ow

Editor/Assembler Memory Usage
DOS Errors with the Editor

The Relocating Loader

Assembler "OOPS" DOS Error Codes
Object File Formats

Symbol Table Formats

Editing BASIC Programs

65

ASSEMBLER/EDITOR

INTRODUCTION
SYSTEM DESCRIPTION

The Apple II Assembler/Editor system is designed for editing and
assembling small to very large programs in 6502 assembly language. The
system comprises three programs: the Editor; the Assembler; and the
Command Interpreter, which calls the Editor and Assembler. The
Command Interpreter is always in memory, and the Editor is in memory
any time the colon prompt, : , is on the screen, which is whenever an
assembly is not taking place. When the ASM command is issued, the
Assembler is loaded in, replacing the Editor and erasing any edit file
in memory. As soon as the assembly is complete, the Editor is loaded,
replacing the Assembler.

The Editor is used to create source programs in the format required by
the Assembler. It may also be used to create EXEC files and to edit
or create BASIC programs. The Editor can handle both disk files,
using DOS, and cassette tape files.

The Assembler is used to translate a source program into 6502 machine
code. It reads source files from the disk and writes each output
module directly to disk. By chaining multiple source files together,
it can assemble very large programs. This Assembler only keeps the
symbol table, and if needed, the relocation dictionary, in memory; thus
the size of an assembly is not limited by the size of a source file.

Full use of all system features requires a 32K Apple II or Apple II
Plus with at least one disk drive and controller with proms P5A and
P6A. Very large programs require a 48K system and additional disk
drives for the source files. The Editor will edit a source file up to
30K in size, or 100 to 1500 fully commented lines of source code.

The Assembler/Editor is designed to operate under l6-sector DOS. The
system diskette contains a copy of DOS, so the system will always run
in the proper environment. The system’s DOS file structure is
compatible with Applesoft and Integer BASIC. It is NOT compatible
with the Apple Pascal system, which has its own Editor and Assembler.

BEFORE YOU START

Before trying to use the Editor or Assembler, you should make a backup
copy of your Applesoft Tool Kit system diskette. To do this, first
make sure your original is write-protected, then boot the DOS from
your DOS System Master diskette and RUN the COPY program.

This manual assumes that you already have some experience in 65(2
Assembly Language programming, as well as some familiarity with the
Apple Disk Operating System. If you are not an experienced disk user,
you should read the DOS Manual before attempting to use this system.

INTRODUCTION 1

T

It
«
5

u have a one-drive system, you can can make a backup copy using
the FID (FIle Duplicator) program on the Apple Utilities Diskette.

STARTING THE SYSTEM

To run the Assembler/Editor, boot your Applesoft Tool Kit diskette,
and type

RUN EDASM

If the system responds with LANGUAGE NOT AVAILABLE, type

RUN INTEDASM

Mote: the Tool Kit diskette must be in drive 1 so that the Command
Interpreter can load the Editor and Assembler modules properlye.

The Assembler ID Stamp will now be displayed on the screen:

aPPLE IC EDITOR-RSSEMELER
CURRENT #SSEMBLER ID STaMP I5:
Bo-NOU-73 #000G8E0

Update the information displayed on the screen by moving the cursor
with the arrow keys —> and <-, and typing new characters over the old
ones you wish to change, the same way you edit a line in a BASIC
program. When you are satisfied, press RETURN. The system’s name and
a copyright message will be displayed on the screen, and the system
prompt character, a colon, will appear at the bottom of the

screen, followed by the cursor, a blinking underline.

NOTE: If you are already running and DOS is booted, you can run the
Assembler/Editor without rebooting DOS. If you don’t want to update
the I.D. Stamp, insert the Assembler/Editor system diskette, type
BRUN EDASM.OBJ

and press RETURN.

At this point all the Editor commands may be used by simply typing the

command and then pressing RETURN. Command mode is always indicated by
the presence of the colon prompt at the beginnning of the line.

2 ASSEMBLER/EDITOR

THE EDITOR
DESCRIPTION OF THE EDITOR

The Command Interpreter of the Assembler/Editor system indicates that
it is ready to accept commands by displaying a colon , : , at the
beginning of each line. Commands may be entered by simply typing the
command and then pressing RETURN. The Command Interpreter ignores
leading, trailing, or embedded spaces in reading commands. Parameters
following a command may not begin with any of the optional characters
in the command’s name. Since most of the parameters that follow
commands are numeric, this restriction seldom applies. Note also that
one or more of the optional characters may be omitted from a command
name, as long as the ones used occur in proper order. For example,
the List command will be imvoked by entering L, LT, LS, or LIT.

The Editor does not maintain line numbers within the edited text file,

nor will it search the file for numbers that match the line numbers
used in your commands. The Editor defines a "line'" as all text

between two RETURNs. The Editor creates the line numbers that are

shown for each line by counting lines from the beginning of the file.
Thus when a line or lines are Deleted, the numbers of all subsequent

lines are automatically lowered. Likewise, when new lines are
Inserted, the numbers of all subsequent lines are automatically
raised. Thus the line numbers used by the Editor are for directing
the Editor only and are not part of the file.

This relative-line-number approach has numerous implications in using

the Editor, which are discussed in the relevant command descriptions.
The Editor can only edit a file that will fit into the available edit
buffer, which is about 29K for a 48K system and 13K for a 32K systea. A
typical 652 source code line with a comment is about 4@ characters, so
a 48K system can edit a program of at least 70@ lines and probably up to
1403 lines, since many lines are very short or don”t include a comment.

The Editor provides 16 adjustable screen-position tab settings to
format the text for easy reading; these are described in the section
on the Tabs command. The Editor only displays the text file using the
4@ column Apple video screen and expects input via the Apple
keyboard. An external terminal can be used, but the output routine
will wrap the lines at 4§ columns. The Edit command is designed to
operate only with the Apple display and keyboard: it will output the
edited line to an external terminal each time a key is pressed.

This Editor is not intended to be a word-processing editor: it is
intended primarily for program development. It is possible to edit
Applesoft or Integer BASIC programs by converting them into text files
using the procedure described in the chapter on Capturing Programs in
a Text File in the DOS Manual. After this is done the text file may
be edited using this Editor. This type of editing is described in
more detail in the appendix Editing BASIC Programs.

EDITOR 3

ENTERING COMMANDS

There is a Help command in the Editor. To see the Help display, start
the system, then type

?

and press RETURN. You will see the syntax of the various commands on
the screen. The Help display fills two screens: press RETURN again to
see the second screen.

When you are entering Editor commands, you may abbreviate the commands
so as to use a minimum of characters to specify the command. For

example, the List command can be imvoked by typing L,LI,LIS or LIST.
You will note in the display that the required characters of each

command are shown in normal display mode and the optional characters
are shown in inverse (black on white) mode.

This optional character facility only applies to alphabetic characters
and the comma. The commas in the ASM command may be omitted only if
all subsequent parameters are also omitted. This is discussed in more
detail under the ASM and COpy commands. In the Help display the
syntax of the parameter(s) after the command name only show the most

common form. For many of the commands, more complex parameter lists
are valid and and will be discussed later under each command.

COMMAND MODE FACILITIES

When you are in command mode (that is, when the colon prompt is
showing), several facilities make the system easier to use. These are
described in this section.

MULTIPLE COMMAND ENTRY

This facility lets you type more than one Editor command as a single
line. The Command Interpreter will save the second and subsequent
commands and, after executing each command, it will fetch the next
command from the queue. Multiple commands are separated by the
Command Delimiter. Until you change it, the Command Delimiter is set
for the colon. Errors in any command will clear the queue of any
remaining commands. Failure to find a string sought by the Find,
Change, or Edit commands is not considered an error by the system.

If the ASM command is entered into the queue, it will be the last

command executed. Any command following it will be flushed when the
Assembler is loaded.

4 ASSEMBLER/EDITOR

Some care must be used in queuing commands, as some of the line
numbers used when keying in a queue of commands may no longer apply if
one of the commands changes the line numbers of lines in the file.

The Add, Insert, COpy, Delete, and Replace commands all could,

depending on what is done with each, change the line numbers of the
lines in the file.

The contents of the queue are not accessed by the Input mode or the
Edit mode at any time, so it is possible to follow one of the commands
that enters one of these modes with another command, such as the List
command or the List Recall command (described below). This lets you
do multiple Inserts or Adds interspersed with other commands. This
facility becomes more powerful with practice.

COMMAND DELIMITER SET

The Command Delimiter setting capability allows you to change the
command delimiter character from the default character, the colon.
This is necessary because the Command Delimiter may not be used as a
character in a search string for the Find, Change or Edit commands.
The colon was chosen as the default since this character is not
commonly used in 65@2 Assembly language source programs.

To change the Command Delimiter, press the ESC key, then the colon key
followed by the desired delimiter character. If you press the
spacebar after the colon the system will beep and expect you to type
some other character. If you press RETURN, the system will just print
the current Command Delimiter and return to command mode. Any other
character will be accepted as the Delimiter to use for command

separation. The period should not be used for a command character, as
this is the Direct DOS Command escape character.

REPEAT LAST LIST COMMAND

This is a simple facility that saves the List command as it is
executed and provides a one-character recall of that command with all
its parameters. To Relist, type CTRL-R, then press RETURN or type the
Command Delimiter and more commands. Relist may be actually be
entered in the command queue like any other command. Remember that it
always re-executes the last List command regardless of when that last
List command was used. The CTRL-R must be the first character of the
command .

EDITOR 5

DIRECT DOS COMMANDS

This facility lets you execute most DOS commands without leaving
command mode. It adds the file-management capabilities of DOS to the
Editor’s scope, while keeping the Editor program small so that the
Apple’s memory can handle large files. It is designed to invoke the
following commands only: RENAME, LOCK, UNLOCK, MON, and NOMON.

Direct DOS commands are invoked by simply typing a period as the
first character of the command line, followed by the DOS command
exactly as it would be typed when using Applesoft or Integer BASIC.

For example, the command

: -RENAME XX,YY
will RENAME a file on the most recently used disk drive.

The Assembler/Editor system is not protected from abuse by a novice
user: it is designed to provide maximum power to the expert
programmer. The Direct DOS Command facility provides unlimited access
to the DOS commands normally available to an executing BASIC programe
This facility must be used with care, as it is easy to execute a DOS
command that will destroy any text in memory.

If you use any of the Access Commands, any of the Machine-Language
File Commands, or any of the BASIC commands, such as LOAD, SAVE, RUN,
or MAXFILES, unpredictable results will probably occur, but most
likely you will clobber the Assembler/Editor if you misuse this
facility. If you issue the INIT command via this facility, your
INITialized diskette will lack a HELLO program, as there was none in

memory for INIT to use, and it will not boot. If you INIT the system
master, well...you did make a backup, didn’t you?

COMMAND SYNTAX HELP

This is the ? command or the Help command. When you type

?

as the command, a special command syntax table will be displayed. Two
screens of abbreviated command syntax are shown: to see the second
screen, press any key. This facility provides a built-in "reference
card" right at your fingertips. You may also enter a command after
the ? and only that command’s syntax will be displayed. If you type
in an unknown command, the entire display will be provided as if no
command had followed the 7.

6 ASSEMBLER/EDITOR

SYNTAX OF PARAMETER LISTS

In the following discussions of the commands, the terms defined here
are sometimes used to specify the syntax of a command’s parameter

list. Some commands have no parameters; others have required
parameters, optional parameters, or both. The following table
describes each type of parameter, but a command may use various
combinations of them. The order shown in each command description (and
in the HELP display) is the order in which the parameters must be
entered. Optional ones can be omitted if not needed.

String parameters require the use of a delimiter (denoted as <Delim> in
syntax diagrams), which is a character that does not occur in the
string to be delimited. It cannot be a comma, hyphen, digit, blank, or
RETURN. Recommended delimiters include single and double quotes,
periods, question marks, exclamation points, and semicolons. If you

use parentheses or brackets of any kind, make sure you use the same one
for each of the delimiters in a command: two left parentheses are a

valid pair of delimiters; a left parenthesis and a right parenthesis
are not a valid pair.

In the following descriptions and examples, the horizontal line should

be read as "or". The expression 1 | 33333 | # | 6 may be read as 1 or
33333 or @ or 6.

Parameter name Description and Examples

Rnumber Required decimal number with a value range
dependent on the command.

1] 33333 | § | 6 are valid
but not .3 | -4 | S$C@@P
Onumber Optional decimal number with a value range
dependent on the command.
1] 33333 | ¢ | 6 are valid
but not .3 | -4 | $SCP@@
Rlinenum Required decimal line number ranging from 1 to
65519.
1§ 33333] 99 | 6 are valid

but not .3 | @ | =555

EDITOR 7

Olinenum

Range

Rangelist

Dstring

Chgstring

8 ASSEMBLER/EDITOR

Optional decimal line number ranging from 1 to
65519.

1 | 33333 | 99 | 6 are valid

but not «3 [@ | -555

Optional line number range, consisting of omne
or two Olinenum’s. If there are two Olinenums,
they must be separated by a hyphen, =~ . If
only a single Olinenum is present, it is the
beginning and the end of the range. The second
Olinenum may be omitted with the hyphen still
present, implying the end of the file. If the
second Olinenum is less than the first and
itself less than 1@, then this is taken to
mean a count of the number of lines in the
range, starting at and including the first

line, so that 10@-99 would be equivalent to
1¢@-199.

1-2 | 19¢¢- | 500-666 | 19@¢-99 | 8@@-1 | 77-77

This is a set of independent Ranges, separated
by commas; , . Each Range is processed

independently of the others. There is no

restriction on the order of the line numbers in
each Range within the list.

1-2 | 1,2-100,3 | 19PP-,222-33,4,55-6,77~77

A Delimited string consists of a delimiter,
zero or more alphanumeric characters, and the
same delimiter.

.what i want to see. | ;; | “a good example”

A Change string is similar to a Dstring. It

consists of a delimiter, as above, zero or more
~haracters, the same delimiters, zero or more
characters, and the the same delimiter again.

See further information under the Change
command .

?oldstring?newstring? | %oldZ%Zreplacement?

Rfilename A Required filename is 1 to 3§ alphanumeric

characters not including the comma, naming a
DOS TEXT file.

MYFILE | MYBASICPROGRAM | MYEXEC | ETC

Of ilename An Optional filename is @ to 3@ alphanumeric
characters not including the comma, naming a
DOS TEXT file.

MYFILE | MYBASICPROGRAM | MYEXEC | ETC

00bj filename An Optional Object filename is the same as an
0fil ename, except that it specifices the name
of a Binary or Relocatable object file
generated by the assembler.

MYDRIVER.OBJ | THE LONG NAME OF MY OBJECT

DevCtlstring A string of characters designed to initialize
an APPLE peripheral card for use as the
assembler ‘s output device.

CTL-I12¢N | CTL-AF

EDITING COMMANDS

This section describes the commands that manipulate the contents of
the edit file. The next section describes the commands that move the
contents of the buffer to and from diskette. The third section
describes the commands that control the overall operation of the
Editor.

Some notes on syntax: Letters in a command name which must be typed

in order to implement that command are shown here in capital letters.
Parameters enclosed in square brackets are optional .

ADD
Add [Olinenum]

The Add command is normally used to add new lines to the end of the
edit file. When you type A, AD, or ADD to the command prompt, the
system will count the lines in the file and display the next line
number to be added to the edit file. You will now have entered Input
mode. You may now type text into the edit file, terminating each
line by pressing RETURN. After each RETURN is pressed, the Editor

EDITOR 9

will prompt with the line number of the next line to be added.

When you have completed your entry of text lines, which might be an
assembler source program, type CTRL-D or CTRL~Q immediately after the
line number displayed on the screen, then press RETURN. This will
terminate Input mode and return you to the Editor Command mode by
displaying the colon on a new line.

You may also use the Add command with a line number. When you do
this, you will enter Input mode as described above, but your new lines
will be added after the line with the given number, rather than the
last line in the file. The Insert command works similarly, but
inserts the new lines before the line with the given number.

When you are in Input mgde, the normal Apple II input editing
functions are all available. If your Apple has the Autostart ROM, the
additional ESC features for cursor movement are also available. The
Editor’s Input mode extends the normal Apple II input routines. When
you enter control characters into the input line and then backspace
over them with the left arrow key, the cursor correctly avoids

backing up on the screen.

Although this mode allows you to put control characters into your
file, you should be careful to keep them out of assembly-language
programs, as they are not valid in assembly language.

COPY

COpy Rlinenuml [~0Olinenum2] TO Rlinenum3

This command will copy one or more lines TO just before linenum3 in
the file. When the optional linenum2 is used the range of lines from

linenuml to linenum2 is copied. If linenum2 is omitted then only
linenuml is copied. The COpy command is the only command that

requires an embedded keyword, TO, inside the parameter list. As is

indicated by the CAPITAL letters in the command syntax above, the two
letters CO are required and the letters py are optional.

Note that the Editor has no ‘Move’ command. Lines may be moved by
COpying to the new location, then Deleting them from the old location.
Be aware that if you do a COpy with linenum3 less than linenuml that
the line numbers of the original lines will be changed when the Copied
lines are inserted before them. So if you then want to Delete the
original lines, you must determine their new numbers before you can
Delete them! You will not have this problem if you are copying forward
in the file to a linenum3 higher than linenuml, as the original lines
will not move.

When linenum2 is used it must always be greater than or equal to
linenuml.

10 ASSEMBLER/EDITOR

CHANGE

Change [Rangelist] Chgstring

The Change command lets you substitute a new string for some or all
occurrences of an old string in the entire edit file or within the
lines specified by the optional Rangelist. If you omit the
Rangelist, the Editor will search the entire file for the old string
and replace all occurrences of it with the new string.

The syntax for the Chgstring is
<delim> [string] <delim> [string] [<delim>]

where the first string is the old string, and the second string is

the new string. The syntax diagram shows that at least two delimiters
(<delim>) are required. The old string cannot be null, and the new
string may be null. The trailing delimiter may be omitted, as the

RETURN can serve in its place. <delim> may not be the command
character.

The Change command will always prompt with the following line:
ALL OR SOME? (A/S)

You may then choose whether to let the Editor change all occurrences
in the range of lines given, or prompt you to verify or reject each

possible change. If you respond with the letter S or any key with a
higher ASCII code, the Editor will stop after showing each Change on
the screen, then flash the cursor, asking for verification of that

specific change.

If you press the ESC key or any other control key except CTRL-C, the
Editor will not make the change, and will search for the next
occurrence of the old string. CTRL-C cancels all changes and returns
you to the command mode. If you press the space bar or any non~
control key (except RESET) the Editor WILL replace the old string with
the new string in the file and go on searching. When you reject a
specific case, the Editor just keeps searching: it does not change the
line on the screen back to its original form, even though the line in
the file was left unchanged.

The Change command does not rescan the current line from the beginning
after each change is made to the line, nor will the new characters just
added by the change command be scanned. This means that if you have,
for example, 1# “*°s in a line, and you do a change of /**/%*/ the line
will have 5 “*’s remaining after changing ALL occurrences of /**/ to

/%]

The old-string part of the Chgstring may be used in a special way by
inclusion of the wild-card character, CTRL-A. It is used to indicate
that any character, except a carriage return, will be matched for each
CTRL-A found in the old-string portion of the Chgstring. This
provides a way of changing a set or class of strings in the file all

EDITOR 1

to the same new string. You may NOT use CTRL-A as the wild-card
character in the new-string portion of the Chgstring; it can only be
used to insert a CTRL-A in that position.

DELETE
Delete [Rangelist]

The Delete command deletes the lines specified by the Rangelist. If
multiple ranges are to be included in the range list they must be in
reverse order (i.e., highest range first, descending to lowest range
last. If this is not done when using multiple ranges with Delete, the
lower range will change all the line numbers of the later lines and
the wrong lines will then be deleted by the higher linenumbered range!

Remember that each Delete will reduce the line numbers associated with
all following lines in the file.

The Delete command may NOT be used without a Rangelist: attempting to
do so results in an ERR: SYNTAX message. Rangelist may not, however,
be linenum-; that is, you must specify both tha beginning and the end
of the Rangelist.

EDIT

Edit [Rangelist] [Dstring]

The Edit command is the most versatile text-manipulation command in
the editor. It puts you into Edit mode, which gives you complete
character-at—a-time editing facilities. Edit mode, like Imput mode,
is separate from Command mode. Edit mode applies to one line at a
time and is one-dimensional: that is, you may only move forward using
the right-arrow key , or backward using the left-arrow key, within the
line being edited.

The Edit command puts the system into Edit mode and specifies the
lines to be edited. 1If both the optional Rangelist and the optional
delimited edit-string are omitted, then ALL the lines in the file are
presented, one after the other, within Edit mode. If both the
Rangelist and the edit string are used, then only those lines listed
in the Rangelist and containing the edit string will be selected and
presented for Editing. If the edit string is omitted, all lines in
the Rangelist will be selected.

Thus you can see that if only the edit string is used then all lines

in the file containing the edit string will be selected for editing.

The edit string may contain the wild-card character to allow matching
on any character (see further under the Change command).

When you are in Edit mode, you can move the cursor forward and
backward, and replace, insert, and delete characters. The line on the

12 ASSEMBLER/EDITOR

in suspense.

All of the Edit mode facilities are accomplished by using control
characters to instruct Edit mode what to do. Typing an Edit mode
control character causes its respective command to be executed; any
other control character will be rejected with a beep. Typed
characters other than control characters are taken as one-for-one
replacements of the characters in the line. These may be the same
characters that are already there, since sometimes it is faster to
retype a few characters than to use the cursor-motion facilities. The
length of the edited line is not limited by the length of the original
line and may end up longer or shorter than the original. Here’s how
to use the Edit mode features:

First, get into Edit mode, using the Edit command to specify the range

of lines to be edited. The first line in the range will be displayed,
and the cursor will move to the first character position of that line.

Now move the cursor to the first character or space you wish to
change, using the arrow keys. Don’t worry if the characters after the
cursor jump back and forth: this happens because the space is used as
the tab character (unless you changed the tab character). Don’t use
the space bar to move the cursor: this will replace the characters
passed over with blanks.

To replace the blinking character, simply type the new character. It
will replace the blinking character, without affecting any other
characters, and the cursor will move to the next character. As you
keep typing, more characters will be replaced.

To insert a character before the blinking character, type CTRL-I, then
the character to be inserted. It will appear before the blinking
character, which will move right one space, taking the rest of the
line with it. As you continue to type, more characters will be
inserted. To finish the insertion, press either arrow key, or type
any control character except CTRL-V.

To delete the blinking character, type CTRL-D. The blinking character
will disappear, and the one to its right will move under the cursor,
taking the rest of the line with it. To erase more characters, type
CTRL-D again, or use the REPT key with CTRL D.

To restore a line on the screen to its original form, type CTRL-R.
The line on the screen will be replaced by a copy of the original,
unchanged, line in the file. This feature is useful if you have made

hash of a line and want to start over. It will only work if you have
not pressed RETURN, which puts the new line into the file.

To find the next occurrence of a character after the cursor, type
CTRL-F, then the character to be found. The cursor will jump to that
character if it can be found in the current line. Otherwise, the
cursor stays in its current position.

EDITOR 13

Control characters can be troublesome: they are always popping up when
you least expect them, and disappearing when you need them most. The
Editor has two facilities that help you control control characters:
Popout and Verbatime.

Popout displays the control characters in a line in blinking,
“popout’, mode. Normally, control characters are invisible on the
screen, but this facility lets you examine them, one at a time. As
you move the cursor back and forth on a line, in Edit mode, any
control characters will pop out at you, pushing the rest of the line
aside. If you are not sure whether a character is a control character
(because the cursor blinks, too), simply move the cursor off it.

If the character goes away, it is a control character.

Verbatim, or CTRL-V, lets you put control characters in your file,
either by replacement or by insertion. (Normally, Edit mode rejects
control characters with a beep.) To replace a character with a control
character, move the cursor to that character. (If you are already
there, and just inserted a character before it, move the cursor back
and forth with the arrow keys, to disable insertion.) Now type CTRL-V
and the character you wish to enter. If you wish to replace more than
one character with control characters, type CTRL-V before each.

To insert a control character before the cursor, type CTRL-I, then CTRL-
V, then the control character. If you wish to insert several control
characters, type CTRL-V before each. You can stay in Insert mode, or
return to Replace mode, as described above.

If you have made all the changes you want, or if you have decided not
to make any, you can leave Edit mode in any of three ways. The first
is to type a CTRL-X anywhere in the line. This completely cancels
Edit mode, even if all lines in the Rangelist have not come up, and
returns to you to Command mode, leaving the current line in its
original form. Even if some changes have been made on the screen,
the line in the file is not changed unless one of the other two exit
modes is used.

To put the changed line into your file and leave Edit mode, press
RETURN. This puts the line as it appears on the screen into the file in
place of the original line. The line in the file in not changed until
this 15 done. When RETURN is used, the entire line is put in the file
regardless of where the cursor is currently positioned in the line.

To put the first part of your line into the file, position the cursor
on the last character you want to keep, then type CTRL~T. This
erases all characters to the right of the cursor and puts the
truncated line into the file.

Once Edit mode has been terminated by a RETURN or CTRL-T, then if
another line can be selected for editing, that line will be presented,
with the cursor at the first character. If another line is not
selected, Edit mode is automatically terminated and you will be returned
to Command mode, having satisfied the conditions of the Edit command.

14 ASSEMBLER/EDITOR

Edit Mode Control Function Description
Character

RETURN Accepts the line as it appears on the screen
and replaces the old line in the file.

CTRL-X Cancels Edit mode entirely WITHOUT replacing
the current line in the file.

CTRL-T Truncates the line at the current cursor
position and replaces the old line in the
file.

CTRL~-R Replaces the not-yet—accepted edit line with
the original line still in the file.

CTRL~-D Deletes the character at the current cursor
position, shortening the line by 1 character.

CTRL=-~I Enters character Insert mode. Characters are
Inserted before current cursor position.

right-arrow key Moves the cursor forward ome position in the
line.

left-arrow key Moves the cursor backward one position in the
line.

CTRL-V character Puts the character verbatim into the line,

either inserting or replacing depending on the
current character mode. Do not type a space
before the character to be inserted.

CTRL-F character Finds the next occurrence of the character to
the right of the current cursor position. Do
not type a space before the character to be
found.

FIND

Find [Rangelist] [Dstring]

The Find command locates and lists all lines containing an occurrence
of the Dstring within the lines of the Rangelist. If no Rangelist is
specified then the entire edit file is searched, if no Dstring is
given then all lines in the Rangelist are listed and if neither are
specified then all lines in the file are listed. The wild-card
character (CTRL-A) may be used in the Dstring of the Find command:
refer to the description of the Change command for details.

EDITOR 15

The Find command will only list a line once regardless of how many
occurrences of Dstring occur with that line. Find simply returns to
Command mode if no occurrences of Dstring can be found or no lines
occur within the Rangelist.

INSERT

Insert Rlinenum

The Insert Command enters Input mode, described earlier under the Add
command, and inserts all the new lines before the given line number.

Insert 1 will insert lines before the first line in the file. Input
mode is terminated by typing either CTRL-D or CTRL-Q. Inserting a

range of lines raises the numbers of all lines after them, so check
the new numbers before doing anything to these lines.

LIST

List [Rangelist]

The List command lists the lines of the Rangelist on the screen,
showing before each line the current ‘editor’ line number of that
line. If no Rangelist is given, the entire file is listed. You may
halt the listing at any point by typing CTRL-C. This will return you
to Command mode. You may also suspend the listing by pressing the
SPACE BAR and restart it again by pressing any other key, except
CTRL~C. If you press the SPACE BAR again, the List command will
display one more line and stop again, thus providing a single-step
mode for examining the lines one at a time.

The List command will just return to Command mode if no lines fall

within the Rangelist. When multiple ranges are used, the List command
puts one extra blank line between the lines of each range.

PRINT

Print [Rangelist]

The Print command is just like the List command in all respects except
that the line numbers are not printed and the first character of the

line is in column 1.

16 ASSEMBLER/EDITOR

REPLACE

Replace Range

The Replace command is just two other commands linked together for
convenience of use. You may enter a Rangelist, but only the first
range of the list will be used. Range may not be linenum in this
case. Replace Deletes the first range and then puts you into Input
mode, Inserting at the first line number of the ranmge. Refer to the
description of Input mode in the Add command for more details. Range

may not be linenum-; that is, you must specify both the start and the
end of the line.

DISK AND TAPE COMMANDS

The Assembler/Editor has three commands that allow you to transfer
text files to and from diskettes. The Editor does this disk input and
output in the same way that a BASIC program would as described in the
DOS Manual. The text files on the diskette are read and written
sequentially. Two additional commands allow you to transfer files to
and from tape cassettes. Note that the line numbers used by the
editor are not part of the file and are never written to the diskette
or cassette.

The Editor’s disk commands work with any DOS sequential text file, but
not random-access text files. Thus the Editor can be used to create
and modify EXEC files, and examine and modify sequential data files
written by BASIC programs, if those files will fit in the available
size of the edit file.

All of the disk commands described in this section use two parameters:

current disk slot and current disk drive. These two parameters are not
supplied in the disk commands themselves, but are initialized to the
boot slot and to drive 1, respectively, when the Assembler/Editor
system is invoked. These two parameters are changed by the SLot and
DRive commands described under Operating Commands, in the next séction.

When any disk command is used, a number of the usual DOS errors can
occur, such as DISK FULL ERROR, or I1/0 ERROR, or NO BUFFERS AVAILABLE,
or SYNTAX ERROR. This manual assumes you are familiar with DOS and
understand these messages. The appendix DOS Errors with the Editor
discusses the most common errors that occur on this system, their
probable causes, and and their remedies. The other DOS error messages
are explained in the DOS Manual.

EDITOR 47

LOAD

LOAD Rfilename

The LOAD command will read a file from the disk drive specified by the
current SLot and DRive settings. The LOAD command assumes that the
filename you have used is the name of a file already on the diskette

that will be accessed. If this is true, the current contents of the
edit buffer will be completely replaced by the contents of that file.
The LOAD command will beep and type END OF DATA when it reaches the
end of the file, and then return to Command mode. You may now use any
of the Editing Commands to manipulate the text.

If the filename is NOT the name of an existing file before the LOAD
command is used, it will be one afterwards, if the diskette is not
write protected. If you thus create a null file on the diskette, the
edit file will be cleared and nothing will be LOADed. This is not
usually what you want, so you must issue a .DELETE filename command to
DOS so the null file will be removed from the diskette’s catalog. This
characteristic of the LOAD command lets you set the current filename
for a new file so that you can use the SAVE command without specifying
a name. It also creates a catalog entry for that name.

WARNING: Do not issue a DOS .LOAD command, as this means to DOS
"Load the named BASIC program from the diskette": When DOS tries to
load your file as a BASIC program, it will write over the Editor.

SAVE
SAVE [Rangelist] [Ofilename]

The SAVE command will save all or part of the edit file to the diskette
in the current SLot and DRive. If that diskette is write protected,
the SAVE command will fail with the usual DOS error message, and then
return to Command mode. The SAVE command first tries to do a DOS
DELETE command on the file before actually doing the save, so as to
free any previously used space in that file. This is necessary if the
old file was longer than the new one.

It is recommended that the DOS LOCK and UNLOCK commands be used to
protect all the other text files on a given diskette when using the
Assembler/Editor. If you do this and only UNLOCK the file you are
editing, the SAVE command will not be able to accidently wipe out a
file with a name similar to the one you meant to type! This happens

particularly often when you are working with a large assembly with
multiple source files, whose names may differ only in the last few

characters.

WARNING: Do not issue a DOS .SAVE command, as this means to DOS "Save
the contents of the current BASIC program": since there is no such
program, the pointers used by DOS to determine the program’s size
contain garbage. This command will therefore have unexpected results.

18 ASSEMBLER/EDITOR

If you include a Rangelist in the SAVE command, the Editor will save

only the first range to the disk file, and will ignore any other
ranges. This provides an easy way to create specific subsets of a file
as other files.

The Optional filename may be omitted if you have previously done a
LOAD or a SAVE with a filename. When a LOAD or a SAVE with a name is
done, the filename is saved and this is used as the default filename
when no filename is given. You can find out the default filename at
any time by using the FILE command. If you have not previously done a

LOAD or a SAVE with a filename, then doing a SAVE without a filename
will get a DOS SYNTAX ERROR and return you to Command mode.

Whenever a DOS error message occurs and SAVE aborts, there may be a
partial file on the diskette that you may want to .DELETE to remove
it. The current edit file is always still intact in memory after a
SAVE, even when DOS gets an error of some kind. When this happens

it is usually best to obtain another initialized diskette, and insert
it into your disk drive, in place of the current one, and try the SAVE
command again.

Back up your diskettes. You should not type more than about twenty-
minutes~worth of input or editing before you stop and do a SAVE
command to get the edit file on the diskette. A one-second loss of
power to your computer can wipe out many hours of editing, so don’t
get so busy editing that you forget to back up your file.

APPEND
APPEND [0Olinenum] Rfilename

The APPEND command is normally used to load a specified file at the
end of the current edit file, thus appending the new file onto the
previously LOADed one. When this is done the current SAVE filename is
not changed to the APPENDed filename. The APPEND command will work
even if the current edit file is empty. In this case APPEND works
like LOAD except that the SAVE filename is not set from the APPEND
command filename.

When the Optional linenumber is given with the APPEND command, it
indicates that the APPEND file is to be written over the edit file
after the given line. This is effectively a truncate-and-load
facility that is useful for moving around pieces of files.

EDITOR 49

TLOAD

TLOAD [Olinenum]

The TLOAD (Tape LOAD) command loads an Assembler/Editor tape file,
previously written by an Assembler/Editor TSAVE command. All the
usual problems with reading tape will be encountered when using this
command, so it is assumed that you know how to adjust your tape
recorder to get it to LOAD. You should refer to the Apple II BASIC
Programming Manual or one of the other Apple manuals providing
instructions on loading tapes if you need any help. This command is
included to provide a cheaper medium for exchanging files than the

diskette, and also to provide a way of archiving files on a less
expensive medium. The format of the Assembler/Editor tape files is
described in the appendix Editor Tape Formats.

When the Optional linenumber is specified, TLOAD will insert the tape
text file before the given line. This is the only way to directly insert
text into the middle of an existing edit file, without typing it in.

The APPEND command, followed by a COpy command and a Delete command,

can provide the insert function for Disk files.

TSAVE

TSAVE [Rangelist]

The TSAVE command writes an Assembler/Editor format tape file
containing the entire edit file if no Rangelist is used. Only those
lines in the Rangelist are put on the tape if this option is used. If

no text is present in the edit file the TSAVE command will still write
its header on the tape before returning to Command mode.

Note that files written by the Assembler/Editor system may not be
LOADed on tape in the same way as BASIC programs, since they are not
in the same format as BASIC programs; tapes are written by the TSAVE
command in the following format:

(1@~second leader)
(16-bit file length)
(1@-second header)
(file data)

This format is written using the monitor WRITE routine in normal
APPLE IT cassette recording format.

Because of the difficulty many users have with cassette tape

input/output, this is not always a practical means of storing
programs, but it does provide a cheaper means of storing old programs,
or text files. The assembler can not be used without a disk system.

20 ASSEMBLER/EDITOR

OPERATING COMMANDS

These commands control various aspects of the system: some let you
adjust parameters to other commands; others give you access to useful
information.

SLOT
SLot Rnumber

The SLot command sets the SLot of the disk controller card on which all
disk operations will occur. This is initialized to the “boot” SLot at
system startup. This command seldom needs to be used, but is provided
for those who use different machine configurations or have more than 1
disk drive controller in their Apple. The Rnumber must be a valid SLot
number for a Disk drive controller and should contain a disk card.
Valid SLot numbers are 1 thru 7. The system does not check to verify
that the SLot does indeed have a controller, but the next time you do a
disk command you will get a DOS “I/0 ERROR” if it does not.

DRIVE

DRive 1

or

DRive 2

The DRive command sets the current DRive on which all Assembler/Editor
system disk operations will occur. The only valid values are 1l and 2,
any other value will give you an error message. The DRive command
returns you to Command mode after setting the DRive parameter in
memory. This parameter is not saved on the disk at any time and

always is initialized to DRive 1 when the system is started. To find
out the current value of the DRive parameter, use the CAT command.

CATALOG
CATalog

This is just an easier way to perform a DOS CATALOG command, which
can be done by using the direct DOS command

< CATALOG,Dd,Ss
The main differences between these two are (a) that you can abbreviate

to the shorter “CAT” and (b) that you can’t specify a SLot or DRive,
since these are added by the system from the current SLot and DRive

EDITOR 21

settings. This is very useful when using a two~drive environment, with
the Assembler/Editor system diskette in drive 1 and your text file
diskette in drive 2. You must issue a DRive 2 command when operating
this way, but after that, the CATalog command will always refer to
that drive, even if it was not the last drive accessed.

FILE
FILE

The FILE command displays the current SAVE filename along with the

information provided by the LENgth command and returns to Command
mode. If no SAVE filename has been “set’ by a LOAD or a SAVE,

nothing is shown above the LENgth display.

HIMEM=

HImem= Rnumber

This command sets the highest available address (HIMEM) for the edit
file in memory. It is initialized to the largest possible address at
system startup time, and it may be reduced if you want to limit the
size of your edit files to less than 29K bytes of text. This command
may be used when a file is in memory, but this is risky, since if you
reduce HIMEM too far you will lose the tail end of your edit file.

The Rnumber represents a decimal address to set HIMEM to and should be
a valid address for this purpose. The HImem= command does not check
what value you give it, and bad values will destory the system’s
operation very quickly. There is generally no important reason to use

HImem=, unless you want to recieve the usual “OUT OF MEMORY® error
before it would normally occur.

HIMEM will be set to 3840 for a 48K system, 26112 for a 36K system
and to 22016 for a 32K system. To determine what address to use with
the HImem= command, subtract from these values the amount you want to
to reduce the edit file by and enter that address in decimal. HIMEM
can be calculated, if LOMEM has not been changed, by adding the items
shown by the LENgth command to 8192, the default LOMEM value.

22 ASSEMBLER/EDITOR

LOMEM=
LOmem= Rnumber

This sets the lowest address (LOMEM) of the edit file. The editor uses
the byte below this address as well. LOMEM is normally set to 8192 at
system startup and may not safely be set to less than this value. If

you do set it lower, you will destroy the Assembler/Editor system,
since the Editor will very soon write on top of itself.

LENGTH
LENgth

The LENgth command displays the amount of memory, in bytes or
characters, that is currently used by the edit file and how much

memory space is remaining unused. The sum of the two is the total
space availlable to the Editor.

MON

MON

This command is intended to provide easy access to the monitor and
easy return access to the editor. Normally this command is not used,
except when you want to to some unusual things. This exit sets up the
monitor CTRL-Y command so that when you type CTRL-Y, you will return
to Command mode. What you do from the Monitor is up to you, but the
memory areas used by the Assembler/Editor system must not be
disturbed. These areas are described in the appendix Editor Memory
Usage. This command is a tool for the expert Apple user and
programmer and would be better left unused by the beginner. Note that

entering either kind of Basic from the Monitor will probably destroy
the memory areas used by the Assembler/Editor system. You may also
return to Command mode via a monitor “3D@G’ command.

NEW
NEW

This command causes the Editor to clear its current edit file. This
does not actually do anything to the contents of the buffer: it simply
sets the end-of-text pointer equal to the beginning-of-text pointer,
otherwise known as LOMEM. It is possible, via the Monitor commands,
to restore the end-of-text pointer to recover an “NEWed’ edit file.
This requires direct examination of the edit file and the pointers to

determine the prior end-of~text address and put that into the end-of-
text pointer.

EDITOR 23

PR#
PR#p[, DevCtlstrg]

The PR# command tells the Editor that assembly listings from the
current session will be sent to some device other than the Apple video
screen. This is normally a printer connected to a printer interface

card, but it could be an 8§ column terminal or some other such output
device. The number p, an integer from § to 7, is the slot number of

the interface card for the output device, unless p is @, which

represents the screen. The Assembler will output to this device or
the special 8¢ column video output routine, but not both.

It is possible that the selected output device may echo what it is
receiving back to the normal Apple 40 column video output routine, but
this is up to you and how you use your device. The Apple printer

interface cards can not simultaneously echo to the Apple screen and
print a listing that is wider that 4§ columns.

The “DevCtlstrg” (Device Control string) is any string of characters
that should be sent to the printer device to initialize it for

listing the Assembler’s output. It may not exceed 32 characters. The
first two parts of the Device Control string are optional: the Logical
and Physical page lengths. The Logical page length is the number of
lines to be printed on a page: it is specified by typing the letter L

followed by a two-digit number. The Physical page length is the number
of lines from one top~of-form to the next: it is specified by typing

the letter P followed by a two-digit number.

The default logical page length is 6@. If no physical page length is
specified, a form feed is given after each page, if a SBTL is used.

The last part of the Device Control string is required: for Apple
printer interface cards it will normally be the typical CTRL~-I8@N
sequence, or something similar, that turns off the Apple screen and
sets the printer width for the paper in use. (NOTE: This sequence is
typed by pressing the I key while the CTRL key is held down, then
pressing the 8, @, and N keys, without spaces anywhere. The CTRL-I
will not show on the screen when it is typed.)

Here is an example of this command, as it is typed at the keyboard
PR#1,L54P66CTRL-I8GN

and as it appears on the screen

PR#1,L54P668¢N

This command will send this session’s assemblies to the printer in

slot 1, which will be set to print 54 lines on a page 66 lines long,
each line having up to 8§ characters, as specified by the string

CTRL- I8¢N.

24 ASSEMBLER/EDITOR

This command stores its information in RAM, but not on disk, so it
must be used again if you start a new session.

TRUNCATE

TRuncON
or
TRuncOFf

These two commands provide a means of TRuncating the displayed lines
of the edit file. TRuncation is set to OFf at system startup and can
be turned on via the TRuncON command. The purpose of this mode of

display is to shorten the text lines so they fit within the Apple’s 4§
column display. This command in no way changes the contents of the

edit file itself: it simply changes what comes out via the List and
Print commands.

Lines are TRuncated at the first occurence of a semicolon preceded by
a space. This is how comments in 65@2 source programs are begun, when
they are included at the end of a statement. When the comments are
TRuncated, it is much easier to read the source programs because,
without TRuncation, the comments usually wrap to a second line. This
mode of display is most useful when writing assembly-~language

programs, especially if no printer is available and all output is
being sent to the screen.

TRuncation mode is automatically suspended when using Edit mode, so
you needn’t fear losing your comments because you forgot to set
TruncOFF.

TABS
Tabs [Tablist] [Dstring]

The Tabs command lets you use the space bar (or some other key) like
the tab key of a typewriter to format assembly-language statements as
you type them in. When you start up the system, the tabs are set to
the standard column positions for 6502 assembly language.

Tabs only operate within the first 40 columns of the Editor output

line. Any Tabs set beyond column 39 will be ignored by the Editor,
but not by the Assembler. Tabbing will move a portion of an assembler

operand over into what is supposed to be the comment field if it

contains a tab character: this usually happens when using an operand
with embedded blanks.

Up to 16 Tabs may be set via the optional Tablist, which is just a
list of absolute display line positions separated by commas. The Tabs

EDITOR 25

must be in increasing order if they are to function properly. If no
parameters are supplied, the Tab table is cleared to all zeros,
effectively turning Tabbing off. The Dstring sets the Tab character
which can be any character except RETURN. The space is the default

Tab character, because this is the proper one for the format of
assembler source programs. The Editor will use any tab character you

like, but the Assembler will only accept the space.

Tabbing occurs when the Tab character is encountered while Listing a
line. This implies that the content of the edit file controls
execution of a tab during line display. The Tabs are output line
positions and they cause different results for List, which prints line
numbers, than for Print, which does not print them. Using the same
Tab settings for Print as for List will, under normal conditions,
cause 6 extra spaces to appear between the first two fields on the
print output line.

WHERE

Where Rlinenum

This command is a tool for manipulating the edit file from the Apple
Monitor. It provides the HEX address of the beginning of any line in
the file. It also provides a means of finding out the current HEX
value of the LOMEM pointer. To find LOMEM, type

Where 1

and press RETURN. This will normally display ‘=$2¢¢@#°, which is
the same as 8192 decimal.

END

END

This command is used to exit from the Assembler/Editor system and

return to the BASIC language. This is a complete exit from the
Assembler/Editor and is provided for ease of use. If you use this

command by accident, you can usually recover from Integer Basic by
immediately typing

CALL 3075

and pressing RETURN. If you have done this, examine your edit file
completely to be sure it is intact before SAVEing it. By doing this,
you can be sure you won’t replace the intact old version of your file
with a scrambled new version.

26 ASSEMBLER/EDITOR

THE ASSEMBLER
DESCRIPTION OF THE ASSEMBLER

The Assembler is designed to facilitate assembly-language programming

on the Apple II. The Assembler requires standard 65$2 address—mode
syntax and has an extensive set of assembler directives. The source
programs must first be created using the editor, following the format
described below. All source programs must reside on diskette, as the
Assembler is not designed for co-resident assembly.

The Assembler is invoked by the ASM command, as described below. The
Assembler translates the source statements from the source file into
65¢2 machine instructions, and writes them into the object, or output,
file. This is a two-pass process. During pass one, the Assembler
reads the source files and generates a symbol table, assigning the
values to all the symbolic labels defined by the user.

In addition, the length of all instructions is determined during this
pass, and any forward references to labels not yet defined are forced
to be absoclute, rather than zero-page, labels. This requires that all
zero-page, or one-byte, labels be defined before they are referenced
in your source programs. The second pass then rereads the source
files and generates the actual machine instructions, using the symbol
table to fill in the address portion of those instructions. As pass
two proceeds, the Assembler writes the object files one sector (256

bytes) at a time into the Binary or Relocatable {see below) output
file.

The Assembler will generate error messages during both passes, and it
will output the assembly listing during pass two. The Assembler will
send the listing to either the Apple video screen or another user
specificed output device. When using the Apple video screen, a
special 8@ column display routine is used. The first 4@ columns of
the listing will be shown on the screen and the second 4@, or
rightmost 4@, will be available for viewing via keyboard commands.
This has been done to put the comment field off the screen, to make
using the Assembler without a printer as practical as possible.

The Assembler may be directed to generate a Relocatable object file.
This type of DOS file provides the additional information necessary to
relocate the machine instructions so they may be executed at an
address other than the one for which the object file was assembled.
This is done by a Relocating Loader, without repeating the assembly.
The additional information forms a Relocation Dictionary, or RLD for
short, which is added to the end of the machine instructions. The
format of the RLD is described in a later section.

ASSEMBLER 27

The Assembler prints, during pass one and sometimes during pass two,
the names of any chained source files as it begins that file. The
Assembler also prints a dot on the screen during pass one, and
sometimes during pass two, every 1ff) lines of assembled source code.

The Assembler only prints the dots and the file names during pass two
if you have turned the listing output off.

BEFORE YOU START

The Assembler is called by using the ASM command, described in the
next section. The Assembler is not in memory at the same time as the
Editor, so it must be BLOADed from disk before starting the assembly
process. This is done automatically by the command interpreter after
setting up the parameter list you enter with the ASM command. If any
errors are made in entering the parameter list, the system returns an
error message instead of BLOADing the Assembler. ©Not all kinds of
errors are found by the system before it BLOADs and calls the
Assembler.

For example, if you use a source filename for which there is no file,
this error is not discovered until the Assembler gets a DOS error
when trying to open that file. The Assembler does not print nice
error messages: it just says

OOPS DOS ERROR CODE = ??

and returns to the command interpreter. The Assembler only does this
for FATAL errors related to disk I/0 or due to insufficient memory for

the Assembly process. These error codes are explained in Appendix D.

The normal Assembler error messages about your source program are
shown on the output device, which may be either the screen or a
printer device, but not both.

The Assembler has a special video output routine that produces 8@~
column video output by using the second video page. The output,
seemingly truncated at 4@ columns, can actually be examined in full,
as revealed in the section Commands Available During Assembly.

The Assembler is not designed to do assemblies with the source text or
the object output in memory: it only reads from and writes to the
disk. The Assembler also keeps the disk drive spinning during the
entire assembly, even when it is not actually reading, so that it does
not have to wait for the drive motor to start and stop.

NOTE: You must SAVE your source program on the current diskette before
you use the ASM command (see below). If you fail to SAVE your file,
and do the ASM command with the edit file still in memory, the command
interpreter will BLOAD the Assembler on top of your edit file,
destroying it, and will then try to read your old source file from the
diske

28 ASSEMBLER/EDITOR

THE ASM COMMAND

ASM Rfilename {,00bjfilename [,[S]s [,[D1d]]]

The ASM command is used to call the Assembler. This section will
explain the parameter list for the ASM command and tell how to use
it. Two parameters not in the above list are also passed to the
Assembler: the Editor SLot and DRive parameters. They are associated
with the name of the beginning source file, shown above as Rfilename.
This file must be online and should be a 65¢2 source program in the
format described in the Assembler portion of this manual. This will
normally be the file you have just finished editing and SAVEd on
diskette.

The Optional Object filename is the name you want the Assembler to use
for the output object (65f2 machine code) file. TIf you don’t provide
a name, a default name is constructed by adding the characters “.0BJf”
to the source file name. The default name is discussed in more detail
in the Assembler section of this manual. If you want to use the

default name and no other parameters, the source filename is all that
is required.

The Ss and Dd parameters are only used if you want to direct the
object file to a disk drive other than the one that contains

the source file. They are the slot and drive numbers defined in the
DOS Manual: s is an integer from 1 to 7; d is either 1 or 2.

Note that the optional parameters are positional and must occur in
the order shown. If you want to use the default values of some
parameters but specify one of the later ones, just put in a comma in

place of each defaulted parameter. For example, if you want to
specify only the drive of the object file and use the default object
name and slot, then you should enter the ASM command as shown below.

:ASM PROGRAM, ,,D2

The two defaulted parameters are indicated by the fact that nothing is
between their respective delimiting commas. The labels “S° and ‘D’
are optional-~the numbers themselves will suffice--but they make it
easier to remember the purpose of each numeric parameter.

A few more typical ASM commands and what they mean:

:ASM MYFILE

This command assembles MYFILE from the current Editor SLot and DRive,
putting the output object file, MYFILE.OBJ@, on that same diskette and
displays the output listing on the Apple screen, using the “8f column’

display mode.

:ASM MYFILE,MYPROGRAM

This ASM command has the same meaning as above, except that the output
filename is to be MYPROGRAM instead of the default. It will not he

ASSEMBLER 29

named MYPROGRAM.OBJ@ unless you explicitly call it that.
:ASM BIGFILE,BIG.0BJ,,D2

This command will assemble BIGFILE into the object file named BIG.OBJ
on (presumably) the other disk drive, Drive 2, of the current Editor
disk controller SLot.

Before starting to Assemble, a message PRESS ANY KEY TO CONTINUE will
appear, giving you the chance to change disks. You can press any key

except reset, and the Assembly will commence. When the Assembly is
finished, a similar prompt will appear, to let you change disks again

before the editor is reloaded.

ASSEMBLY MODE COMMANDS

Several mode commands have been incorporated into the Assembler to
let you control the assembly process as it takes place. These
commands are described below:

ABORT ASSEMBLY
CTRL~C

The Apple looks at the keyboard during both passes of the assembly
process, but only the Abort command affects pass one. The assembly

may be Aborted at any time during either pass by typing a CTRL-C on
the keyboard. Doing this will cause the Assembler to “clean up’
before returning to the Command Interpreter. This clean-up consists
of CLOSING all the open files and freeing up the DOS buffers that are
in use. It does not include removal of the output files that may have
been generated on the output diskette. This may be done by issuing a
DOS ’.DELETE” command from command mode.

SUSPEND OR SINGLE-STEP LISTING

SPACE BAR

During pass two the listing may be stopped by pressing the SPACE BAR
on the Apple keyboard. <he listing may be restarted by typing any
other character that is not a mode character to the Assembler. 1In
additon, you may “single step’ the listing a line at a time by
pressing the SPACE BAR once for each line. Note that this may leave
the source disk drive motor running and the assembly process is
suspended until the AC power goes away or you resume it as described
above.

30 ASSEMBLER/EDITOR

LIST PART OF PROGRAM
LST ON
LST OFF

The Assembler has a directive, LST ON/OFF, that may be put into your
source programs to control what parts of the listing are output. This
same facility may be controlled from the keyboard during pass two.
Doing this from the keyboard overrides the current state of the LST
option until the next LST directive in your source program or your
next command from the keyboard, whichever occurs first. Thus you may
examine sections of the listing you turned of f from within the source
program, or you may turn off sections you have turned on. This is
usually only used when working on large programs, where a small area
of the program has been changed and you don”t want to see all the
reste.

The Listing NO command is CTRL~N; the Listing ON command is CTRL-0.
Remember that the Assembler could encounter a LST directive that
counteracts your most recent CTRL-N or CTRL-O from within the source

program. To correct this, just reissue your command from the
keyboard.

SOURCE PROGRAM FORMAT

The Assembler’s input source files are normal DOS text files made up
of logical records. A logical record is a string of ASCII characters
terminated by an ASCII carriage return ($8D). All ASCII characters
must have their most significant bit (MSB) set to a one. Each of
these source records is divided into four fields: the label, the
operation code or opcode, the operand and the comment. These fields
are normally separated by one space, since the editor tab function
will format the display, during editing, using the space for its tab
character. Make sure you use the space as the tab character in all
assembly-language source files: although the Editor allows you to use
other characters for this purpose, the Assembler does not.

Every source record or statement must contain an opcode, unless it is

purely a comment. Blank or null source statements are invalid. The
Assembler uses spaces as tab characters, so you should put spaces
between fields and not within a field. To skip over a field, use two
spaces. The Assembler does not allow multiple statements in a record,
or allow line numbers in source statements (except as comments).

ASSEMBLER 31

THE LABEL
label
label:

The label is an optional field, except where noted in a particular
statement description. Any source statement may be identified with a

symbolic label, except a pure comment. A label must begin with a
letter, A-Z, and must contain only letters, digits, and periods. A

label may contain 1 to 25@ characters, but 16 is a practical limit.
The label may be terminated by a colon or a space (or by any other
character that is not a letter, digit, period, or RETURN), and it will
be ignored by the Assembler. Labels may not contain imbedded blanks.

The label must always begin in the first character position of the
record. All labels or symbols must be unique: that is, any symbol
must be defined only once in a given program, even a multifile
program. The Assembler will flag a "DUPLICATE SYMBOL’ error if you
attempt to create two identical symbols. All characters of a symbol

are significant in determining uniqueness. When symbols are used on a
source statement, except for the EQU directive, the value assigned to

the symbol will be the current address as calculated by the Assembler
for that line.

If a symbol is referenced in an operand field, the Assembler will
substitute the value assigned to that symbol for that symbolic
reference. All absclute symbols, or 16-bit symbols, may be defined
anywhere in the program, but symbols referring to ‘page zero’
addresses, those less than 256 decimal, must normally be defined
before they are referenced so the Assembler can determine the number
of bytes required for the instruction on the first pass. If you fail

to do this the Assembler is forced to assume an absolute address mode
instruction.

It is good programming practice to define all data symbols, as opposed
to program symbols, at the beginning of your programs. This is
facilitated by the DSECT and DEND directives in the Assembler.

THE OPERATION CODE

The second field of the source statement is the opcode field. It must

always be separated from the label field by at least one space. If no
label is present, the opcode must be preceded by at least one space.
Opcodes consists of two or more letters terminated by a space. These
mnemonics are the same as the MOS Technology mnemonics, with a few
added synonyms for the branch instructions. The assembler directives
used are not the standard MOS Technology ones. A complete table of

opcodes and directives is found in the appendix on Object File
Formats.

32 ASSEMBLER/EDITOR

Assembler directives, or pseudo-operation-codes (pseudo-ops), are

entered in the opcode field and used just like opcodes. Pseudo-ops
are instructions to the Assembler and direct the course of the

Assembly, but do not appear in the object code.

THE OPERAND FIELD

The operand field of the statement is required for some opcodes and
not for others. It generally contains an expression formed out of
constants, labels, and arithmetic operators. These operations have no
precedence other than left-to-right occurrence. The Assembler
recognizes the standard 652 MOS Technology address mode syntaxe. A
summary of this is given on page 49, but if you are not familiar

with 6562 programming, it is suggested that you read one of the many
65@2 Programming Manuals before you start coding.

THE COMMENT FIELD

The comment field, always optional, is used to document what the
program is doing. The Assembler ignores the comment field, and just
prints it with the rest of the statement when the program is listed.
The comment may contain any arbitrary set of ASCII characters and
should be separated from the operand field by a space and a

semicolon (;). When the Assembler can unambiguously determine where
the previous opcode or operand field ends, it does mot need the space
and semicolon; but the editor’s TRuncation facility does require these
two characters.

The Assembler also recognizes statements that begin with an asterisk,
% , in the first character. These statements are treated entirely as

comments, and are listed and ignored by the Assembler. The semicolon
may also be used as the first character to indicate a comment.

FORMING THE OPERAND FIELD

Before describing the assembler directives and, briefly, the operation
codes, it is necessary first to present the form of the operand field
or expression. Expressions consist of simple operands--such as
labels, constants, and reserved words--combined into expressions with
arithmetic operators. The Assembler performs the expression
evaluation during pass two, after all symbolic labels have been
defined.

In determining whether an expression is to return a 16-bit or an 8-bit
expression, and thus change the length of an instruction, the
Assembler only looks at the first simple operand in an expression

ASSEMBLER 33

during pass one. Thus it is possible to force a long, three-byte,
instruction to be generated with a zero-page address. This is done by
subtracting an absolute symbol from itself and then adding the desired
zero~page sub-expression.

LABELS

Labels are, in general, symbolic names for a 16-bit value of some

kind. For the 6502, there are two kinds: values whose most
significant 8 bits are zero, and values whose most significant 8 bits
are not zero. Those of the first kind are called zero-page labels.
The value assigned to a label is determined by the type of statement
on which it occurs. If a label occurs on a statement that generates
machine code or reserves memory space, the label 1s given the

value of the program address counter that it labels. This will always
be a 16-bit value, of one type or the other. If a label occurs on an
EQUate pseudo-operation, the label is given the value of the

operand expression evaluated.

When a label appears in the operand field, the Assembler substitutes
the value for the label in calculating the value of the operand.

CONSTANTS

The Assembler will recognize four types of constants in the operand
expression: string constants and three types of numeric constants.
Constants are used to represent actual data items, such as ASCII
characters, or tables of data, as well as address offsets, or absolute
addresses of hardware devices, or locations fixed by the 65@2 micro-
processor design. A constant has a fixed value that is evident from
looking at the constant itself, whereas a label has a value that may
change if the program is modified or located elsewhere in memory.

Decimal Constants

Decimal constants represent numbers in base 1#. A decimal constant is
a positive integer between @ and 65535, composed of a sequence of
decimal digits from @ to 9. Any numeric constant is assumed by the

Assembler to be decimal unless it is preceded by the hexadecimal or
octal radix character. If a numeric constant evaluates to a number

larger than a 16 bit binary number, the Assembler generates a numeric
overflow error message for that expression.

Hexadecimal Constants

Hexadecimal, or Hex, constants represent numbers in base 16. The
characters used to represent Hex constants are the decimal digits ¢ to
9, plus the letters A to F for the decimal values 1¢ thru 15. Hex

34 ASSEMBLER/EDITOR

constants must be preceded by the Hex radix character, the dollar
sign, $. The $ may not be used for any other purpose in numeric
constants, but is allowed as a character in a string constant. The
Assembler terminates what it considers a numeric constant of any kind
when it finds a character that is not legal for that type of

constant. In addition, if such a character terminates the last simple
operand of an expression, that character will be treated as the
beginning of the comment field.

Octal Constants

Octal constants represent numbers in base 8. They are not commonly
used with micro-computers, but many programmers with long years of
experience learned on them, so they are included as a convenience for
those who like to use them. The digits used to represent Octal
constants are the decimal digits # to 7. Octal constants must be
preceeded by the Octal radix character, the “at’ sign, @. The @
may not be used for any other purpose in numeric constants, but is
allowed in a string constant. Octal constant are terminated in the
same manner as Hex constants, except that the digits 8 and 9 are not
valid octal characters.

String Constants

String constants represent sequences of ASCII characters, and are
represented by enclosing the characters between single quotes, .

A string may not cross statement boundaries, and may be up to 24
characters in length. When a string constant is used as the operand
of an immediate-mode expression, it need not have the trailing quote,
since such a string may only be one character in length. The value of
a character is its corresponding ASCII code plus the most significant
bit (bit 8 in ASCII terms). The value assigned to the MSB is
determined by the MSB assembler directive, unless it is used with the
DFI pseudo, which has a standard pattern associated with the MSB.

RESERVED WORDS

Normally, a 65@¢2 assembler is supposed to prevent the use of the one-
character reserved words, A, X, Y, P, and S, as labels in source
programs. This assembler will allow you to use any of these as a
label on a statement, but will not allow the use of the character A as
a label in an operand expression. It is suggested that you NOT use
these or any other one-character labels, to keep your source programs
compatible with the standard 65(2 syntax.

ASSEMBLER 35

ARITHMETIC OPERATORS

The Assembler supports the four arithmetic operators +, -, *, and /
for use in creating simple linear address expressions. In performing

these arithmetic operations, the Assembler does not check for numeric
overflow of the results: it just retains the 16-bit results, thus

allowing wrap—around address calculations. When the Assembler has

been directed to generate a Relocatable output module, it will not
allow the multiplication and division operators to be applied to a

relative symbol, as this would degenerate to a non-relocatable result.

ADDRESS EXPRESSIONS

The Assembler provides for simple linear address expressions consisting

of simple operands and the above arithmetic operators. The valid
syntax for an expression, in Backus~-Naur Form (BNF), is as follows:

Sopand := Symbolic Label | Constant
Aop =+ | - | %]/
Expression := Sopand [Aop Sopand [Aop Sopand]...]

This syntax definition says “An expression is a simple operand
optionally followed by one or more arithmetic-operator-and-simple-
operand sequences’. The expression is evaluated from left to right.

The syntax definition also indicates that an Aop may not be first in

an expression, nor may an Aop be last. The address expression must
not contain blanks: if it contains a blank, the part after the blank
will be read as a comment. Failure to follow the above rules in
forming expressions will usually result in a BAD EXPRESSION error for
the offending source line, during pass two of the assembly.

- ASSEMBLER DIRECTIVES

The directives in this section are used to direct the overall operation
of the assembly process, and to identify to the Assembler those labels
that are fixed addresses or have special meanings. Each directive is
used like a normal operation code in the source line. Some of these
pseudo-operation-codes require labels, since they are used to establish
the value of a label or some special characteristic of a label. Any of

these directives may be preceded by a label, followed by a comment, or
both.

36 ASSEMBLER/EDITOR

ORG

ORG expression

The ORG directive establishes the origin of the object code. The label
is optional, and the symbolic labels used in the expression must have
been defined previous to the ORG statement. The presence of the ORG
statement is required to cause the generation of an output file from
the Assembler. If no ORG statement occurs the Assembler will produce
a listing without producing an object file. The Assembler recognizes
two kinds of ORG statements, absolute and relative. A relative ORG is
one which contains relocatable symbols, and thus just updates the
position in the current object file. A few examples of this are:

ORG *+45
ORG SYM+1¢
ORG *-2

These relative ORGs cause the Assembler to position to a new position
in the output file for the generation of the output code. The
Assembler will position both forward and backward.

An absolute ORG is one which contains an absolute expression, which
normally means a constant. Each absolute ORG is used by the Assembler
to define the address tec assign to code generating statements. It is

also used to control the address placed in the output file, which will
be used by DOS when the object file is later BLOADed or BRUN. The

Assembler generates a new output file for each absolute ORG it
encounters during an assembly.

Normally only one such ORG will occur in an assembly, but when a second
one is encountered, the current one is closed and a new output file is
started. The last character of the object filename is incremented by
one, each time this occurs, to form a unique filename. It is your
responsibility to make proper use of these multiple output files or to
combine them later for execution if that is required. When RELocatable
object files are being generated, the RLD is cleared each time an absol~
ute ORG is encountered, so that each segment of such an assembly will
have its own separate RLD.

oBJ

The OBJ directive has been included for compatibility with a previous
version of this Assembler, in which it was used to specify the memory

address of the output object file, which now can only be written on the
output diskette. This directive is reserved for possible future

enhancement of the Assembler/Editor system.

ASSEMBLER 37

EQU

label EQU expression

The EQUate directive is used to assign a value to a symbolic label,
where the label must be present, and must not be used for a label on
another statement. The Assembler evaluates the expression, during pass
one, and assigns this value to the symbolic label.

The purpose of using symbolic labels is to create a source program that
means something to people, rather than just to the computer. When a
program is written, extensive use of this directive will create a
program that is easy to change and understand a year after it is
written. The EQUate statement provides an easy way to name even an
ASCII character that might serve as a special delimiter in a program.
Using this directive, rather than just using a string constant in many
places, makes it possible to change how a program functions without
having to edit many lines of the program to make such a change.

MSB

MSB ON
or

MSB OFF

The MSB directive provides a means of controlling the value of the most
significant bit or MSB of the ASCII characters as they are generated by
the Assembler. The MSB pseudo may be changed as many times as needed
during an assembly program. The ASCII characters affected by MSB are
those generated as immediate string constants, and the string operand
of the ASC pseudo, but NOT the DCI pseudo.

The Assembler defaults to MSB ON because the APPLE II expects ASCII
characters this way for normal display.

DSECT
DSECT

The DSECT directive is used to define an area of memory, such as a data
table, or command control block, without actually generating any output
object code. The DSECT dj-ective is used to mark the beginning of a
block or group of statements that define the values of the labels that
will be used to reference such a memory area. The most common use of
the DSECT is to define the labels of data items, and pointers, etc.,
that occur in the 65@2 Page Zero area of memory.

38 ASSEMBLER/EDITOR

The DSECT will cause an implicit ORG to address zero and will

temporarily suspend object code output. The DSECT may contain most of
the Assembler statements, including the ORG statement. The name DSECT

comes from Dummy SECTion, so called because it generates no output
image. Once a DSECT has been started, it remains in force until the
occurance of the DEND directive. If an ORG statement occurs within a
DSECT, it is used only to control the addresses assigned to labels
within the DSECT, and does not function as a normal ORG as described
above, nor does it change the current address, or program counter,

which has been saved for the duration of the DSECT.

It is not valid to try to nest DSECTs, by having a DSECT inside another
DSECT.

DEND
DEND

The DEND directive is used to signal the end of the current DSECT,
and the resumption of code generation at the saved program counter
address.

If a DSECT is started and never ended by the DEND directive, the
remainder of your program, following the DSECT statement, will be
listed just like a normal assembly, but no output will be generated.
This missing DEND problem can be the source of mysterious loss of
proper object code in your output files.

REL
REL

The RELocatable directive causes the Assembler to create a relocation
dictionary for use by a relocating loader program. The RLD is only
produced during the assembly process and written to the object file if
the REL pseudo occurs in the source program. When REL is used, the
object file is given a new type character, the letter R in the DOS
catalog. This file has a new format defined in a later section, and
can NOT be used by the DOS BLOAD and BRUN commands. The RLOAD program
is discussed in Appendix C. The format of the REL pseudo is the same
as the DEND pseudo except for the mmemonice.

The REL pseudo must occur at the very beginning of a source file,
before any symbols are used, to operate correctly.

ASSEMBLER 39

EXTRN
EXTRN label

The EXTeRNal directive is used to indicate a reference to an externally-
defined symbol. These symbols are always treated as two-byte (or long-
form) symbols, never as zero-page symbols. The Assembler generates
zeros in the address portion of the instructions referencing symbols
that are defined as EXTeRNal. If REL is used, and symbols are defined
as EXTeRNal, the Assembler adds an External Symbol Directory after the
RLD in the relocatable object file. This dictionary would be used by a
Linking Loader program, which would resolve these external references
from other modules, possibly in a library of modules.

The External Symbol Directory, or ESD, that could be added to a
RELocatable file is cumulative, for all segments of multiple output
file assembly, since this information resides in the symbol table, and
not in the RLD table.

The optional label, in the label field of the EXTRN, serves only to
define that label with the current value of the program address. The
label after the EXTRN pseudo is the label defined as the EXTeRNal symbol.
The EXTRN pseudo should not be used inside a DSECT.

ENTRY

ENTRY label

The ENTRY directive is the complement of the EXTRN pseudo, and is used
to define what symbols of a program may be EXTRNed, or referenced, by
another program. More than one of these may be used in a program, to
define alternative entry points for the module. These symbols are then
marked in the ESD along with the necessary information to link other

modules to this entry point.

The label after the ENTRY pseudo is the label that is defined to be the
entry point label. The value of this label is normally defined
elsewhere, but it could be the optional label field of the ENTRY
statement. If this is done, the entry point is defined as the current
value of the program counter at the point of the ENTRY statement. The
“ENTRY statement should not be used inside a DSECT.

Both the ENTRY and EXTRN psuedos may be used even when REL is not used,
and have been included in the Assembler for completeness even though
no Linking Loader has been written to make use of the ESD. Using
these directives provides a useful way of defining an address that is
filled in at execution time, when self mpdifying code is being

created. The ENTRY pseudo never creates anything in the machine code
portion of the output file; the EXTRN pseudo allows an undefined symbol
to remain undefined without generating an error message to that effect.

40 ASSEMBLER/EDITOR

CHN

CHN sourcefilename[,slot expression [,drive expression]]

The CHaiN directive is used to connect together the segments of a large
source program. The slot and drive expressions are optional; the
filename is required. All statements following a CHN directive will be

ignored; thus CHN would normally be the last statement of a source
file. The Assembler will abort with an OOPS error 6 if the filename
given does not exist on the current or specified slot and drive. The
Assembler does not check to see whether such a slot and drive actually
exist, so if you address a non-existent slot or drive, DOS will return
an I/0 error that will abort your assembly, with an OOPS error 8.

Slot expression and drive expression are checked for valid range,
of 1 to 7 and 1 or 2 respectively.

LISTING DIRECTIVES

The listing directives, or pseudo-ops, are designed to provide control
over the format and presentation of the Assembler’s output listing.
The use of these directives, is entirely optional, but using them does
save space in the source files and improves the readability of your
video and printed listings.

Most of these listing directives will accept a label within the label

field itself. These embedded pseudos will be assigned the current
program counter address, but many of these pseudos do something, and do
not print the actual line on the listing. This can result in a label
being defined but not printed, although it will be visible when using
the editor. It is not recommended that labels be defined in this
manner. :

PAGE
PAGE

This directive causes a page eject to occur by sending an ASCII form-
feed character to the output device. It also sends a blank line to

the APPLE video screen at the same time. The PAGE directive itself
does not print as a line on the listing, but its presence is shown by

its action and the ‘missing’ line number in the listing. It may be
found, when using the editor, by editing the missing line number.

ASSEMBLER 41

LST
LST ON

or

LST OFF

The LiST directive provides a means of supressing part or all of the
source listing. Turning the listing off, using this directive, can
increase the speed of assembly; this will be most noticeable when a
large assembly is being done to a printer. Any number of these
directives may be used to selectively turn on and turn off various
parts of the listing.

REP

REP expression

The REPeat directive is used to create a string of characters, starting
in the first character of the source line part of the listing. This is
commonly used to create a line of asterisks to set of f comment

headings at the beginning of subroutines or modules. This pseudo-op
conserves source program file space by compressing the number of
characters required to create a long line of the same thing to 6 or 7
characters. The default character that is repeated is the asterisk (*):

it may be changed with the CHR directive described below. Any
number of REP directives may be used, in the following format.

The expression is treated modulo 256: from 1 to 256 of the currently
defined CHR will be printed. In other words, if the value of the

expression is a number longer than 8 bits, only the least significant 8
bits will be used, the rest ignored.

CHR
CHR ?

The CHaRacter directive is used to change the character repeated by the
REP directive.

The ? represents the character you want to see printed. Any number of

these may be used to change the character around for different parts
of your fancy listing.

42 ASSEMBLER/EDITOR

Sl
wf

[AN]
SKP expression

The SKiP directive provides a means of inserting some number of blank
lines in the listing, by sending ASCII carriage returns to the output
device. The device must provide its own Line Feed on CR if that device
requires a LF to advance a print line on the paper.

The expression is treated the same as the expression of the REP pseudo.

SBTL

SBTL Dstring

The SuBTitLe directive provides a title line (specified by the Dstring)
at the top of each page of the listing file. Using SBTL is optional,
but it does provide a useful means of identifing a specific listing.
This pseudo causes the first line of each page to contain the current
subtitle followed by the Assembler ID Stamp, which is the date followed
by a six-digit integer. The ID Stamp is kept in a Binary file named
ASMIDSTAMP. The system will work without this file, so you can DELETE
it if you choose.

DATA DEFINITION DIRECTIVES

These directives are used to allocate or define data areas within the
assembler program. Special directives are provided for address tables
and messages, as these data structures are very common in assembly
programs. These directives may be preceded by labels, followed by
comments, or both.

ASC

ASC Dstring

The ASCII directive defines a string of 8 bit bytes in the output
object file that are filled with the ASCII values of the characters in
the string constant of the ASC directive. All the bytes generated by
the ASC pseudo are printed on the output listing, with the source line
being printed on the first line of this output. Three or fewer bytes
are printed on each source line, without a line number until all the
bytes are printed. If a label is present on the ASC pseudo, it is
assigned the current value of the program counter, which will be the
address of the first character of the string constant in memory.

ASSEMBLER 43

A Dstring (delimited string) is begun with any character that is not
to be in the string, and optionally terminated with the same
delimiter. The terminating delimiter may be omitted if the comment is
also omitted. The MSB pseudo controls whether the MSB bit of each
character in the generated bytes is a one or a zero.

DCI
DCI Dstring

This directive functions just like the ASC directive, except that the
MSB pseudo does not control the MSB of each byte. Instead, all bytes,
except the last, of the DCI string have a zero MSB and the last has
an MSB of one. The format of this command is identical to the ASC
formate.

DFB

DFB expr[,expr...]

The DeFine Byte directive is used to separately define one or more
bytes. The assembler evaluates each expression and uses the resulting
value, modulo 256, as the value for each byte. A label on the DFB
pseudo will have the address of the first byte generated. If the bytes
that are generated are calculated from a relocatable expression, an
entry will be made in the RLD, for each such byte, sc that its value
can be relocated. It is suggested that the DFB directive be limited
to 5 to 1§ expressions, and using multiple DFBs rather than a large
number of expressions on one DFB.

The comma is the only valid delimiter between expressions.

DW

DW expression

The Define Word directive is used to define a two byte 6502 word.
A 6502 word is special in that the lowest 8 bits of the 16 bit
expression are stored in the first of the two bytes, and the most

significant or high 8 bits are stored in the second byte. This is the

44 ASSEMBLER/EDITOR

order that the bytes must be in to be able to use the 16 bit address
as an indirect address pointer, such as is used by the indirect
indexed and jump indirect instructions of the 65@2 mircoprocessor.

The label is given the value of the program address, which is the
address of the first, or low order, byte of the word.

DDB

DDB expression

The Define Double Byte directive is like the DW directive, except that
the bytes are stored in reverse order, with the high-order byte first
and the low-order byte second.

DS

DS expression

The Define Storage directive is used to reserve a group of bytes
without having to define what is to be put in the bytes. The
expression of the DS directive must not have any forward references.
The amount of space reserved by the DS pseudo is included in the size
of the output object module, by performing a file position command.
This means that if you accidentally enter a DS with an expression that
comes up with a value of, say 48K bytes, you will suddenly get a very
large output file. The expression is most often used as a relatively
small constant, for small data areas, since large buffers and work
areas should not be part of an object program, (unless of course you
have disk space burning a hole in your diskette).

The label will be assigned the address of the first byte of the
reserved space that is allocated. When a DS is used inside a DSECT no
space is actually reserved, but this is an easy way to define a data
structure that can have insertions made, by adding more DS statements,
without having to edit any of the other statements before re-assembly.

CONDITIONAL ASSEMBLY DIRECTIVES

A basic conditional Assembly feature is included in the assembler.
This feature allows the programmer to conditionally select alternative
sections of source code for inclusion or exclusion in the assembled
object file. Conditional assembly is most often used to write a
single "generic" program which includes a number of possible
environments, such as production versus test, or “machine
configuration x° versus ‘machine configuration y“. Three directives

ASSEMBLER 45

are used for conditional assembly: DO, ELSE, and FINish. The DO and
FIN directives must always be used as a pair, which mark the beginning
and end, respectivly, of the section of conditional source statements.
The ELSE directive is only allowed within the range of a DO-FIN block
of statements. All the control of the conditional assembly is at the
DO statement; the ELSE statement is used to invert the condition
determined by the DO statement. These directives may be preceded by
labels, followed by comments, or both.

DO

DO expression

The DO directive performs two tasks for the assembler. One is to mark
the beginning of a conditional block of source statements. The

other is to evaluate its expression to determine if the block of
statements is or is not to be assembled. The expression of the DO
statement is evaluated during pass ! and so it may not contain any
forward references to undefined or externmal labels. If the result of
the expression evaluation is non-zero, the assembler continues to
assemble the statements within the block. In other words, the
condition for assembly is TRUE or ASSEMBLE ON.

If, on the other hand, the expression result is zero, the assembler
starts skipping source statements, although they are listed and marked

as skipped, until the FIN statement terminates conditional assembly.
Thus the conditon for assembly is FALSE or ASSEMBLE OFF.

ELSE
ELSE

The ELSE directive may only occur inside the conditional assembly
block delimited by the DO~FIN directives. The ELSE directive
complements or inverts the state of the condition that is in effect as
the result of the expression evaluation of the preceding DO

statement. Thus if the state is OFF, it is changed to ON, and vice
versa. In other words, if the source is being skipped until FIN, the
ELSE resumes assembly until FIN. If assembly was proceeding, then
ELSE begins source skipping until FIN. This is designed to allow for
alternative code blocks te be selected by a single sequence of
assembler directives:

DO condition
block 1

ELSE
block 2

FIN

46 ASSEMBLER/EDITOR

FIN

FIN

The FIN directive is used to terminate the conditional assembly block
of statements. After a FIN terminates such a DO-FIN group, then
assembly returns to the unconditional or assemble ON state. A FIN
may not ever occur by itself.

Note the order of first letters of the Do, Else, Fin is alphabetical
and it is also the only valid order for these three directives. The
use of the ELSE directive is entirely optional. In additiom, there
need not be any statements between the DO and the ELSE, thus allowing
a DO NOT construct. This DO NOT construct is useful if it is
necessary to separate complementry blocks of source code with some
common section of code that must occur before one alternative and
after the other. This also allows the same expression to be used in
widely separate areas of the program that must assemble in opposite
ways on a common condition.

ASSEMBLER 47

ADDRESSING MODE SUMMARY

Note that all required syntax may be preceded by an optional label.

Addressing Mode Required Syntax
Implied (no address) opc
Accumulator opc A
Immediate opc ffexpression
Low 8 bits of address opc #>expression
High 8 bits of address opc #<expression
Zero page opc zpg-expression
Indexed X opc zpg-expression,X
Indexed Y opc zpg-expression,Y
Absolute opc abs-expression
Indexed X opc abs-expression,X
Indexed Y opc abs-expression,Y
Indirect,Indexed X opc (zpg-expression,X)
Indirect,Indexed Y opc (zpg-expression),Y
Absolute Indirect JMP (zpg-expression)

ASSEMBLER DIRECTIVE SUMMARY

ORG ORiGin

OBJ OBJect

EQU EQUate

MSB MSB

DSECT DSECTion
DEND Dsect END
REL RELocatable
EXTRN EXTeRNal
ENTRY ENTRY

DO DO if

ELSE ELSE

FIN FINish
PAGE PAGE Eject
LST LiSTing

REP REPeat

CHR CHaRacter
SKP SKiP

SBTL SuBTitLe
ASC ASCii

DCI DCI

DFB DeFine Byte
DW Define Word
DDB Define Double Byte
DS Define Storage

48 ASSEMBLER/EDITOR

OPERATION CODE SUMMARY

ADC A+M+C = A JMP Jump to New Location
AND A and M -> A JSR Jump to Subroutine
ASL C & [7c.0] < LDA M > A

BCC Branch on C = LDX M- X

BCS Branch on C LDY M~-> Y

BEQ Branch on Z ISR @ - [7..8] = C

BIT A and M, M7 -> N, M6 - V

BGE Branch on
BLT Branch on
BMIL Branch on
BNE Branch on
BPL Branch on N =
BRK Force Break
BVC Branch on V =
BVS Branch on V =

i

[

[SERFSER SR =

NOP No Operation (PC=PC+l)

oo

|
— S R~ R

PHA A =» Ms S~1 —»
PHP P -» Ms S=1 >

PLA S+l = S Ms —»
PLP S+1 - S Ms —>»

N ZOO

e wm

ROL Le—1[7..0] «C <«
ROR [—> C—> [7..0] —>4

CLC g - C RTI Return from Interrupt
CLD 3 - D RTS Return from Subroutine
CLI ¢ -1
CLV g =V SBC A-M~C-> A
CcMP A-M-—>P SEC 1= C
CPX X =M-» P SED 1 - D
CPY Y~-Mw>» P SEI 1 - 1
STA A - M
DEC M~1->M STX X —=> M
DEX X-1=-X STY Y > M
DEY Y-1->Y
TAX A - X
EOR A xor M = A TAY A —> Y
TSX S - X
INC M+ 1 - M TXA X => A
INX X+ 1-»X TXS X -» §
INY Y+ 1 - Y TYA Y - A

SYMBOL TABLE LISTING

The Assembler has a third phase which produces an optional Symbol Table
Listing. This listing is produced twice, first in alphabetical order,
and then in address order. The Symbol Table Listing is suppressed if
the assembly is aborted by typing a CTRL-C or if the Listing has been
suppressed by the LST OFF pseudo or the CTRL-N command. Placing the
LST OFF pseudo at the end of your source program will suppress the two
Symbol Table Listings. Suppressing the entire Listing with a LST OFF
pseudo at the beginning and putting a LST ON psuedo at the end will
produce ONLY the Symbol Table Listings.

The Symbol Table Listing automatically adjusts the width of its output
for the APPLE 4@ Column Screen or a printer (which is assumed to be 8¢
columns or more). It will display the table in two columns on the

screen and print it in four columns on the printer. The listing only

ASSEMBLER 49

contains the first 14 characters of any label, and it only sorts up to
that many as well.

The various special characteristics of labels can be determined from the
format in which the addresses are printed and the special flag

characters that print just before the address value. Below is a small
example of the Symbol Table Listing. When a symbol address is printed

with two leading spaces, this indicates that the assembler considered
that symbol to be a zero-page address. If the two leading zeros are
printed, it indicates that the assembler was forced to consider the
address to be an absolute address, because of a forward reference, even
though it could have been a zero~ page address if it were defined before
being used. This is usually corrected by moving a DSECT or a EQU up to
the beginning of your programe.

The ? before the address indicates a symbol that was defined but never
referenced. The * indicates the symbol was referenced but never

defined, thus causing one or more NO SUCH LABEL errors. The X before
the address indicates the symbol is an EXTERNAL symbol and the N

indicates the symbol is an ENTRY point symbol.

Here is a sample Symbol Table Listing:

SYMBOL, TABLE SORTED BY SYMBOL 27-JUL-79 #@@@9¢ PG 11
6D ADPTR 6F ADTBLND 2D3E ALPHAS 24 CH

N2CP¢ SYMDUMP @#P72 SYTYPE 2D6E SWAP ?72DF4 SWIPEIT

2E5F TABLEND ?2E84 TESTLBL ? (A TXTBEG 77 VAL

*2E99 XXXXXX X 76 YYYAV

Due to limitations in the Assembler’s syntax-checking, you may
occasionally be able to enter an invalid line into a program, without
having it rejected. If this happens, and you run the program, the
system may hang, or the program may seem to run, but run incorrectly:
when you look at the object code, the program counter may jump from
$4p9 to $20@P, or a branch may go to tht wrong place. Two examples of
incorrect lines that may be allowed into your program follow:

Case 1. A line should have a series of numbers, separated by commas:
nl,n2,n3
but instead you have a space after one number:
nl,n2, n3
When the assembler makes its first pass, it will get all the n’s, but
when it makes its second pass, it will take the space for the end of the
line, and ignore n3.

Case 2. You type a blank line followed by a RETURN. The assembler,
instead of flagging it, will reuse the last opcode, and will generate a
spurious line of code.

These errors rarely occur--programmers have used this assembler for
months without running into any--but if your program crashes for no
apparent reason, check for this kind of error after ruling out the more
likely sources of error.

50 ASSEMBLER/EDITOR

APPENDICES

52
54
56
58
60
62
64

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

Az
B:
C:
D:
E:

G:

Editor/Assembler Memory Usage
DOS Errors with the Editor

The Relocating Loader

Assembler "OOPS" DOS Error Codes
Object File Formats

Symbol Table Formats

Editing BASIC Programs

APPENDICES 51

APPENDIX A:

EDITOR/ASSEMBLER MEMORY USAGE

The editor is written in a combination of 65@2 assembler language and
the “psuedo 16-bit machine’ language Sweet 16. The Assembler does not
itself generate Sweet 16 code. The Sweet 16 code interpreter is
included in the Editor module (called EDITOR in the diskette
directory) of the system. It has been reworked from the version in
Apple II's Integer Basic ROM, to maximize the speed of the Editor.
The Command Interpreter (EDASM) module is entirely in 65@2 assembly
code; its main function is to parse the commands into parameter lists
and to call the EDITOR. The Command Interpreter module also parses
the ASM command into a parameter list and overlays the Assembler
(ASSM) module and the EDITOR module from the diskette.

This memory map shows the areas used by the Command Interpreter,
Editor, and Assembler modules.

Memory COMMAND INTERPRETER/ ASSEMBLER USAGE
Address EDITOR USAGE

(in HEX)

$0000 SWEET 16 Registers, Work pointers and
to work variables, and variables during
SPPFF flags for editing. assembly.
$P109

to 65@2 Hardware Stack 6502 Hardware Stack
SPLFF

$@200¢ Editor Input Buffer

to for command entry and Not used
SP2FF text entry.

SP3@0 Editor numeric input

to stack, permanent flags Input parameters
$@P3CF ASMIDSTAMP file and ASMIDSTAMP file
$@3DP

to Not used DOS Interface
$@3FF JUMPS and SUBRS
$@400

to Editor Screen Memory Assembler Screen Memory
SPTFF

52 ASSEMBLER/EDITOR

Memory
Address
(in HEX)

$0800
to
$@8FF

$0900
to
SPIFF

SOAPD
to
SPAFF

$PBOY
to
SPBFF

S$pcag
to
S11FF

$1200
to
$1D8¢

to
$2000
to

$318¢
to

HIMEM=

$9600

to
$SBFFF

COMMAND INTERPRETER/
EDITOR USAGE

Editor String Parameter
Stack

Editdr Command Stack
Save Area

Editor LIST Command
Save Area

Not used

EDASM Module (65@2)

EDITOR Module

(6502 & SW16)

SWEET 16 Machine

(65@2 code)

Edit File beginning
(first line)

(last line)

DOS (48K)

ASSEMBLFER USAGE

Assembler Parameter List
and
Assembler OQutput Screen

Assembler Output Screen
Assembler Output Screen
Assembler Output Screen

FDASM Module (6542)

ASSM Module (65$2)

.
.

Approximate beginning
of Symbol Table Area

(first symbol)

(last symbol)
(last RLD entry)

(first RLD entry)

DOS (48K)

This memory map is provided for reference only. Apple Computer Inc.
reserves the right to change or expand the areas used at any time and
without notice.

APPENDIX A 53

APPENDIX B:

DOS ERRORS WITH THE EDITOR

The Command Interpreter and Editor programs interface to DOS in the same
manner that a BASIC program would. When the system is started up, it
changes DOS so that the Command Interpreter is treated by DOS as its
host language. This provides a means of trapping all the DOS error
conditions and returning into the editor after they occur. In addition,
reinitalizing the DOS via the usual *3DPG command will reenter the
Command Interpreter module. Likewise, if you have the Autostart ROM, the
RESET key will return you into the Command Interpreter, via DOS.

The system only uses the error-trapping aspect of this setup for
detecting ‘END OF DATA’ or EOF conditions when reading input text files
and when BLOADing the ASMIDSTAMP module. All error messages are

displayed on the Apple screen before DOS returns into the system. Thus
when a LOAD command is given, DOS responds with “END OF DATA® when if

reaches the end of the file and this shows on the screen. The DOS MON
and NOMON commands may be given if you want to see exactly what the
Assembler/Editor system is doing. The Direct DOS command facility is
used to do this, and you can view a file being LOADed by typing

«MON I
or view the DOS commands by typing

-MON C

This table shows some of the ways in which DOS errors may happen. It
is not the total list but it represents the most common errorss

DOS Error Message Usual Command and Situation
WRITE PROTECTED Attempting to SAVE to a diskette with a write-

protect tab, or doing the ASM command with a
write-protect tab on the Assembler/Editor
diskette, which prevents the ASMIDSTAMP file
from being updated with the new number.

END OF DATA This normally occurs at the end of each LOAD
command .
FILE NOT FOUND This will occur immediately after the ASM

command if you do not have a file named
ASMIDSTAMP on your Assembler /Editor diskette.

The system does not require that this file be
present and the message should be ignored.

54 ASSEMBLER/EDITOR

1/0 ERROR

DISK FULL

FILE LOCKED

SYNTAX ERROR

NO BUFFERS AVAILABLE

FILE TYPE MISMATCH

PROGRAM TOO LARGE

This can also occur if you try to issue a
Direct DOS command, such as LOCK or UNLOCK,
that cannot find a file.

This should not normally occur, but it could
occur for LOAD, SAVE, or CATalog. If it occurs
during a SAVE, your output file is probably bad

and you should do a SAVE command onto another
diskette. If it occurs during a LOAD, your file
was only partially read in and may be
permanently lost (backing up is wise). If it
occurs for CATalog, you’re in deep trouble and

may have lost your diskette.

This usually occurs during a SAVE: if you get
this message, you should find another diskette
to reSAVE your file onto, then clean up the full
diskette if you want to put the file on it.

This can occur if you are in the habit of
LOCKing your files and try to SAVE to a file
that is LOCKED. The LOCKed file remains
intact, as does your current edit file. UNLOCK
the file or change the SAVE name before trying
to save the file again. It is excellent
practice to lock all the files on your diskette

except the one you are editing to avoid SAVEing
with the wrong name.

This is the result of issuing a Direct DOS
command with incorrect syntax.

This can occur if you invoke the system after
MAXFILES has been set to one and you somehow

issue a DOS command that tries to use two files
at once.

This will occur if you try to LOAD some kind of
a file other than TEXT or try to SAVE using a
name that is already in use by a another type

of file, such as Integer or Binary.

If this occurs, you have tried to do a Direct
DOS LOAD command and have clobbered the entire
system, along with your edit file. Read the
manual again for the warnings about this class
of problems.

APPENDIX B 55

APPENDIX C:

THE RELOCATING LOADER

The Assembler can be used to generate relocatable object files that
can be relocated after being loaded by a relocating loader. ©Note that
a relocating loader is not a linking loader. The two programs on the
Assembler/Editor system diskette, RBOOT and RLOAD, make up a
Relocating Loader for ROM or Language Card Applesoft II.

These two programs provide a way to load one or more assembler modules
from an Applesoft program and have the load address of each module
returned after each module is loaded. The modules are loaded starting
just below the current HIMEM setting and the new value of HIMEM is
reduced by the length+l of the object code portion of the REL object
file. This simple method of memory management requires that no
strings may be allocated before using the Relocating Loader, since no
attempt is made to save any string data that might be allocated where
the modules are placed in memory.

In addition to the above restriction of using the Relocating Loader
prior to using strings variables, the programmer must not DIMENSION
or allocate new numeric or string variables between using RBOOT and
the last usage of RLOAD to pull in the desired modules. This is due
to the way in which RBOOT and RLOAD occupy memory relative to
Applesoft’s variable tables.

RBOOT is a small program, very similar to the Applesoft CHAIN module,
that is BLOADED into addresses $2f8 thru $3CF and invoked by doing a
CALL 52f. Note the usual D$ for the DOS BLOAD command should be
replaced with a CHR$(4)... remember NO strings!!. RBOOT is a small
scanning relocator designed to load and relocate RLOAD into memory at
least one page (256 bytes) above the end of Applesoft’s variable table
and set the Applesoft USR function jump address to point to the entry
point of RLOAD. This means that RLOAD can be pulled in after
variables have been dimensioned if desired, but before strings have
been used in any way.

Now, to load a REL module, the programmer invokes RLOAD via the

USR(@) function; RLOAD either returns the load point address or gives
an ON ERR message that indicates the problem encountered during the
attempted load. RLOAD and RBOOT both assume that the ON ERR statement
is in effect prior to using RBOOT or RLOAD, and will not function
correctly if it is not and an error is encountered.

The RBOOT function accepts no parameters; it assumes that RLOAD is on

the diskette last accessed, which will normally be the same diskette
from which RBOOT was BLOADED. The RLOAD function accepts three

56 ASSEMBLER/EDITOR

parameters from the USR(§) statement. These parameters must be inside

a quoted literal and may be separated from the USR function by a
comma. The following example shows the syntax to be used:

1¢# ADRS = @ : REM PRE ALLOCATE VARIABLE TABLE
2¢) PRINT CHR$(4);"BLOAD RBOOT":CALL 528

3¢ ADRS=USR(#),"MYMODULE,S6,D1"

The slot and drive parameters are optional; the filename is required,
and must be the name of a REL type file, not a BINARY type file. The
slot and drive parameters may be in either order, and either or both
may be omitted as needed. If the filename is omitted, the “FILE NOT
FOUND‘ error code is returned, instead of a ‘SYNTAX ERROR’ code.

The value returned by the USR function is a signed REAL result that can
later be used to enter the loaded module via the CALL statement. This
obviously assumes that the module begins with an executable code
segment. An effective means of providing multiple entry points is to
put a table of jump instructions at the start of the module. This
allows doing CALLs to the returned ADRS, ADRS+3, ADRS+6, ADRS+9, and
so forth, as a means of entering the various sub-functions in a
module. It also allows the contents of the module to grow or shrink
later and not disturb the BASIC program’s interface to the module.
Additional jumps can be added to the table later for new functions and
not disturb the existing interface to the original entry points.

The programmer may load as many modules as he chooses, up to the
available memory space minus the size of RLOAD itself. RLOAD is about
1.5K in length and always loaded on a page boundary by RBOOT. RLOAD
requires that there be at least 1 free file buffer available that it
can borrow from DOS . If this is not true, a NO BUFFERS AVAILABLE
error will occur. The reduction of HIMEM by RLOAD is not restored,
(except by entering Integer BASIC) and the programmer should save the
initial value of HIMEM, by PEEKing it out of page zero, and restore it
at program termination.

Care must be taken when testing a program that uses this loading tool,
since repeated RUNning will cause RLOAD to bring in a new copy of a
module for each run, and allocate new space each time. This can eat
up all of memory in short order if HIMEM is not restored to its normal
value before each test. An easy way to do this is to issue an FP
command to DOS, and then RUN the program from the disk. This may add
extra SAVES to the testing process, but that seldom proves to be a
disadvantage anyway. Note that an FP command erases the program
currently in memory!

Note that this relocating loader does not provide any support for the
EXTRN and ENTRY pseudo-ops of the Assembler, although the necessary
data is generated in the ESD by the Assembler, to support a linkage
editor-loader.

APPENDIX C 57

APPENDIX D:

ASSEMBLER “OOPS” DOS ERROR CODES

The Assembler uses DOS throughout the assembly process, and it is
possible for the DOS to fail to accomplish some of the functions
requested of it by the assembler. None of these errors are normal;
all are fatal to the assembly process. When they occur the Assembler
will stop the assembly and print the message:

00PS! DOS ERROR! CODE=xx

while beeping three times. The error codes and their meanings are
shown in the table belows.

When this happens, the Assembler will then abort the assembly and
attempt to close all open files. The attempt to close may also fail
with another OOPS error, in which case the Assembler will give up and
return to the Command Interpreter. Normally, it will be possible to
close open files, but in some cases--say, if you open the disk drive
door and remove the diskette--it will be impossible, and you will get
an error message.

The error codes are the ones used by DOS with the “ON ERR GOTO’
statement: they are also explained in the DOS Messages chapter of the
DOS Manual. Many of the comments about causes for these errors apply
to this system, so it is suggested that this chapter be read as
background material.

If any other OOPS error codes occur, most probably the Assembler/
Editor system has been clobbered in memory, due either to a sof tware
bug or a hardware failure. Please refer any repeatable errors of this
kind to Apple Computer Inc. in writing: if at all possible send a
diskette that will reproduce the problem. Include all relevant
information: your machine type, memory size, peripheral cards
installed, number of disk drives and controllers in use, and any
modifications that might have been made to any of the above.

You should always attempt to recreate any problem with a fresh copy

of the Assembler/Editor system diskette before concluding that you
have found a program bug.

58 ASSEMBLER/EDITOR

00PS
Error Code

Meaning and
Usual Cause

B4

p6

#8

?#9

gc (12)

gA (19)

WRITE PROTECTED DISKETTE

You have a write-protect tab on the diskette to which
the assembler was told to write the output object file.
This will not occur until the beginning of PASS 2.

FILE NOT FOUND

This is usually due to using the ASM command with a
source file name that is not in existence or not on the
diskette in the current SOURCE DRive and SLot. It camn
also occur when a CHN command is used and the needed
file is not present on the proper diskette.

I/0 ERROR

This is usually a read error but it can alsc be a write

error caused by bad diskette media. If it is a hard
read error on an input file, the same problem would show

up when you try to LOAD that file. TIf it was a write

error on the object file, that file will show up in the
CATALOG as being only 1 sector, or it will get an I/0

error when you try to BLOAD the file into memory.

DISK FULL ERROR

This occurs when there is no space left on the output
file diskette for the output file. This can occur at

any time during PASS 2, so it is wise to know that there
is enough space on the diskette for the output.

NO BUFFERS AVAILABLE

This error is not likely to occur unless you have

entered the system with MAXFILES set to 1. A normal
assembly requires that there be at least 2 buffers
available. If the ASM had previously “OOPSed’ out of an
assembly and was unable to close all the open files,
this situation could arise. You should execute a Direct
DOS .CLOSE after this occurs, if the system doesn’t die
because it can’t reload the editor.

FILE LOCKED

This occurs if you have locked the object file.

APPENDIXD 59

APPENDIX E:

OBJECT FILE FORMATS

The assembler generates two kinds of DOS object files: Binary

memory~image files and Relocatable binary code files. The format of
the Binary files generated by the assembler is identical to the DOS
Binary format, and this type of file will be generated unless the

REL pseudo occurs at the beginning of an assembly source programe.

These files may be BLOADed and, if properly coded, BRUN from the
normal BASIC/DOS environment (NOT from within the Assembler/Editor
system). A Binary file must begin its code at the first byte of the
file if it is to be BRUN, and may not have data areas at the beginning
of the file. A common way to do this is to put a JMP to the actual
program at the very beginning of the file.

The Relocatable binary file type is an extension of D0S: the table

below defines the format of this file type. The symbol => may be read
as "indicates" in this context.

RELOCATABLE FILE FORMAT

Byte
Sector (Hex) Contents of byte
1 @ Starting RAM address, low byte
1 Starting RAM address, high byte
2 Length of RAM image, low byte
3 Length of RAM image, high byte
4 Length of code image, low byte
5 Length of code image, high byte
1 to 6 to Binary code image, of length in
N cl+6 bytes 4 and 5 above
cl+7 Begin Relocation Dictionary,
which consists of N 4 byte entries.
N is variable(@ to??)
1 RLD flags bytes containing 4

flag bits as follows

$8¢ bit Size of relocatable field
Clear => 1 byte, SET => 2 byte

S40 bit Upper/Lower 8 of a 16 bit value
Clear => low 8, Set => high 8§

60 ASSEMBLER/EDITOR

Sector

Byte
(Hex)

Contents of byte

$20 bit

$1¢ bit

$P1 bit

N*4+1

N*4+2

1 to
sl

sl+l

$1¢ bit
$¢8 bit

s 142

End
mark

Normal/reversed 2 byte field
Clr => low-hi, Set => hi-low
(the DDB pseudo causes Set)

Field is EXTRN 16 bit reference
Clr => not ext, Set => is EXTRN

‘NOT END OF RLD® flag bit
ALWAYS SET ON for RLD entry
Clear marks end of RLD

Field offset in code, low byte
Field offset in code, high byte

Low 8 bits of 16 bit value
for an 8 bit field containing
upper 8 bits, Zero if $4¢ bit
clear in RLD byte one. Or if
the $1¢ bit is set, then this
is the ESD symbol number.

Binary @@ marks end of RLD.

Beginning of optional External
Symbol Directory (ESD). This
area will only contain bytes
if an EXTRN and/or ENTRY
pseudo occurs in the program.

The ext/ent Symbolic name of
length sl bytes where all bytes
have their $8f bit set except
the last one.

Symbol type flag byte defines
which type of symbol ext/ent

Set => EXTRN symbol type
Set => ENTRY symbol type

Ext/ent symbol number refered
to by an RLD entry with EXT bit
set on.

High byte of offset for entry
type symbol, (low is in sl+2)
for the ENTRY type of symbol.

Binary zero byte marks end of
the ESD entries, of which there
may be zero.

APPENDIXE 61

APPENDIX F:

SYMBOL TABLE FORMATS

The symbol table generated during pass ! of the assembly process is
described here, along with the table format as it remains after the
symbol table has been modified by the symbol-table sort and print
(pass 3) routine. The symbol table will be in its modified form and
the RLD may be clobbered, if the symbol table sort and dump was

allowed to execute and it overwrote the RLD with its sort index table.

The symbol table is a variable-length entry format table with flag bits
to signal the end of the variable-length name character string.

The basic format is (Symbolicname)(Flagbyte)(Low value) (High value)

Symbolicname consists of 1 to n characters each with their $8¢ bit
set with the last character’s $8f bit reset.

Flagbyte contains the bits which define the characteristics of
the symbol and its value and how it can be used to
generate instructionse.

$8¢ bit Forward Reference bit Set

This means that the symbol was referenced but not
defined. This flag is reset when a symbol is defined,
and if it remains set at the end of pass 1 the symbol is
undefined and will cause the “no such label’ error
during pass 2. Symbols with this bit set are printed by
pass 3 with an “*° next to the “address’ (which is
meaningless: it is simply the the value of the program
counter at the first reference).

$40 bit Unreferenced Symbol bit Set

The symbol was defined but never used as the operand of
any instruction in the program. This bit causes the “?”7
to print next to the address value for an unreferenced
symbol in the dump.

$20 bit Relative Symbol bit Set

The symbol’s value is a relative symbol rather than an

absolute address. Relative means relative to the
beginning of the module. It is used internally by the

assembler when generating the Relocatable type of output
file to cause an RLD entry to be created for any
references to the symbol.

62 ASSEMBLER/EDITOR

$1P bit EXTeRNal Symbol bit Set

The symbol was defined as an external symbol via the
EXTRN pseudo. This causes the symbol to be put into the
ESD and prevents the symbol from being considered
undefined, even though no value is assigned to the
symbol. Using such a symbol will cause an RLD entry to
be marked as EXT and cause the external symbol number to
be put in the RLD entry in place of the relative

of fset. EXTeRNal symbols can only represent undefined
16-bit values (not-8 bit or zero-page values).

$P8 bit ENTRY Symbol bit Set

The symbol is an entry point into the module that can be
referred to by an EXTRN in another module. This causes

the symbol to be included in the ESD for resolution by a
linkage editor (nmot yet implemented).

$04 bit MACRO name bit Set

The symbol is really a macro file name: the value bytes
hold drive and slot respectively. This is not yet
implemented.

$@2 bit NO Such Label Error bit Set

The symbol has caused one or more NO SUCH LABEL errors.
This is used to prevent a duplication of a single error

in the error summary table during pass 2.

$41 bit Absoclute Address bit Set

A forward reference forced the symbol to be considered a
16-bit value. Zero-page labels print in the symbol dump
with blanks for the first two bytes. They print with
two zeros when this bit is set. If the definition is
moved forward so that the symbol is defined before it is
referred to, reassembing the program may generate
shorter, zero-page, instructions.

When the Symbol Sort and Dump routine executes, it modifies the symbol
table format to speed up the scanning of the table for its second
phase. The last character of each symbol has its high-—order bit set
on and the Flagbyte is changed. If the Flagbyte has its $8f bit set
its value is changed by ORing it with $7E to set all bits on but the
$¢1 bit, which is retained, and the $8¢ bit is set off to mark the end
of the Symbolicname. Thus if pass 3 is run, all Flagbytes will have
their $80 bits reset, and undefined symbols will have a Flagbyte of
$7E or $7F.

APPENDIX F 63

APPENDIX G:

EDITING BASIC PROGRAMS

It is possible to list a BASIC program into a text file and edit it
with the Editor. The section Capturing Programs in a Text File of

the DOS Manual explains how to create the text file from BASIC. After
LOADing that text file you may perform many useful functions on the
text file using the Editor. The Find command can be used to locate
all statements that refer to a given BASIC variable name, or line
number. The global Change command can be used to change all
occurrences of a variable name to a new name, or to change all
occurrences of a GOSUB to some other line number, etc.

Care must be taken when changing line numbers of statements that are
part of the edit file, because is is possible to change a statement’s
line number but not the references to it elsewhere in the program. It
would be best to avoid changing any line numbers anywhere in a BASIC
program and use the Applesoft/Integer BASIC RENUMBER programs to
perform that kind of change. The Edit command is very useful in
changing characters within a line or adding a statement in the middle
of a line.

The Editor will show two line numbers for every line of the BASIC
program. The first line number is always the Editor line number, and
the second is the line number of the BASIC statement. You may not use
the line numbers in the file as line number parameters for Editor
commands. Changing the order of lines in the text file without
changing the line numbers will not change their order after re-
entering the text file back into BASIC. When you are done editing,
you must SAVE the text file back onto your diskette and get back into
BASIC, via the END command, before you can re-—enter the edited text
file back into BASIC. After you are back in the proper BASIC
language, you must enter a DOS command similar to the one below:

EXEC myprogram

This command will cause the entire text file to be read back from the
diskette into BASIC, just as if you were typing it from the keyboard.
Thus each line must begin with a line number if it is to get into the
program, and the order of the BASIC lines in the file is not
important, since the line number determines where the line goes in the

program. This example assumes that you SAVEd your edited file in the
Assembler/Editor system with a ‘myprogram’ name of your own choosing.

64 ASSEMBLER/EDITOR

INDEX

A

Abort assembly 30
Add 9
Address expressions 36
Addressing mode summary 48
APPEND 19
Arithmetic operators 36
ASC 43
ASM command 29
Assembler
Description 27
Directives
CHN 41
DEND 39
DSECT 38
ENTRY 40
EQU 38
MSB 38
OBJ 37
ORG 37
REL 39
Directive summary 48
ID stamp 2
Memory usage 52-53
"00PS" DOS error codes 58
Assembly mode commands 3§
Abort assembly 30
Suspend or single-step
listing 3¢
List part of program 31

B

Backus~Naur Form (BNF) 36
BASIC programs, editing 64

C

Catalog 21

Change 11

Chgstring 8

CHN 41

CHR 42

Command delimiter 4, 5

Command mode facilities
Delimiter set 5
Direct DOS 6
Multiple entry 4
Repeat last list 5
Syntax help 6

Comment field 33

Conditional assembler directives

DO 46
ELSE 46
FIN 47
Constants 34
Decimal 34
Hexadecimal 34
Octal 35
String 35
Copy 18

D

Data definition directives
ASC 43
DCI 44
DFB 44
DW 44
DDB 45
DEND 39
DCI 44
DDB 45
Decimal constants 34
Delete 12, 13
DEND 39
DevCtlstring 9, 24
DFB 44
Directives
Assembler 36-41

Conditional assembler 45-47

Data definition 43-45
Listing 41-43
Disk and tape commands 17

APPEND 19
LOAD 18
SAVE 18
TLOAD 29
TSAVE 26

DO 46

DOS

Assembler "OOPS" error codes

Direct commands 6
Errors with the editor
DRive 21

INDEX

54

58

65

DS 45

DSECT 38
Dstring 8
DW 44

E

Edit 12

Mode control characters 14,
Editing BASIC programs 64
Editing commands

Add 9

Copy 1§
Change 11
Delete 13, 12
Edit 12

Find 13, 15
Insert 13, 16
List 16

Print 16

Replace 13, 16
Restore 13

Editor
Description 3
DOS errors 54
Entering commands 4
Memory usage 52

ELSE 46

END 26

ENTRY 4@

EQU 38

EXTRN 40

F

FID program 2
FILE 22

FIN 47

Find 13, 15

Format, source program 31
Forming the operand field 33

G

H

HELP command 4, 6

66 ASSEMBLER/EDITOR

W
o~

Hexadecimal constants
HImem= 22

Insert 13, 16

L

Labels 34
Forming the operand field 33
Source program format 31
LENgth 23
List 16
part of program 31
Listing directives
CHR 42
LST ON/OFF 42
PAGE 41
REP 42
SKP 43
SBTL 43
LOAD 18
LOCK 6
LOmem= 23
LST ON/OFF 42

M
MON 6, 23
MSB 38

Multiple command entry 4

N

NEW 23
NOMON 6

®)

OBJ 37
Object file formats 6§
Octal constants 35
Ofilename 9
Olinenum 8
Onumber 7
Oobjfilename 9
OOPS error codes
Operand field 33
Operating commands

CATalog 21

DRive 21

END 26

FILE 22

Hlmem= 22

LOmem= 22

MON 23

NEW 23

PR# 24

SLot 21

TRuncate 25

Tabs 25

Where 26
Operation code 32

Summary 49
ORG 37

58-59

P

PAGE 41

Popout 14
PR# 24

Print 16

Q

R

Range 8

Rangelist 8

RBOOT 56

REL 39

Relocatable file format
Relocating loader 56
RENAME 6

REP 42

6%

Repeat last list command
Replace 13, 16

Reserved words 35
Restore 13

Rfilename 9

Rlinenum 7

RLOAD 56

Rnumber 7

SAVE 18
SBTL 43
SKP 43

SLot 21

Source program format 31
String constants 35

5

Suspend or single-step listing 30

Sweet 16 52
Symbol table
Formats 62
Listing 5§
Syntax help, command 6

Syntax of parameter lists

T

Tabs 25

Tape commands:
commands

TLOAD 2§

TRuncate 25

TSAVE 20

U

UNLOCK 6

\"

Verbatim 14

W

Where 26

6

see Disk and tape

INDEX 67

